祁连造山带东段中寒武世深沟组中-基性火山岩锆石U-Pb年龄、地球化学特征及构造环境

李瑞保, 裴先治, 王兴, 陈有炘, 李佐臣, 刘成军, 王盟, 裴磊, 张玉, 颜全治, 彭思钟, 胡晨光. 祁连造山带东段中寒武世深沟组中-基性火山岩锆石U-Pb年龄、地球化学特征及构造环境[J]. 地质通报, 2018, 37(4): 589-603.
引用本文: 李瑞保, 裴先治, 王兴, 陈有炘, 李佐臣, 刘成军, 王盟, 裴磊, 张玉, 颜全治, 彭思钟, 胡晨光. 祁连造山带东段中寒武世深沟组中-基性火山岩锆石U-Pb年龄、地球化学特征及构造环境[J]. 地质通报, 2018, 37(4): 589-603.
LI Ruibao, PEI Xianzhi, WANG Xing, CHEN Youxin, LI Zuochen, LIU Chengjun, WANG Meng, PEI Lei, ZHANG Yu, YAN Quanzhi, PENG Sizhong, HU Chenguang. Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen[J]. Geological Bulletin of China, 2018, 37(4): 589-603.
Citation: LI Ruibao, PEI Xianzhi, WANG Xing, CHEN Youxin, LI Zuochen, LIU Chengjun, WANG Meng, PEI Lei, ZHANG Yu, YAN Quanzhi, PENG Sizhong, HU Chenguang. Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen[J]. Geological Bulletin of China, 2018, 37(4): 589-603.

祁连造山带东段中寒武世深沟组中-基性火山岩锆石U-Pb年龄、地球化学特征及构造环境

  • 基金项目:
    中国地质调查局项目《祁连成矿带肃南—大柴旦地区地质矿产调查》(编号:DD20160012)、《青海省循化县道帏地区1:5万I48E002003、I48E003003两幅区域地质矿产调查》(编号:12120114018219)、《青海省共和县曲什那地区1:5万J47E021017、J47E021018、J47E022018三幅区域地质矿产调查》(编号:12120114041201)和国家自然科学基金项目《东昆仑东段晚古生代—早中生代构造演化与造山过程研究》(批准号:41472191)、《东昆仑东段东昆中蛇绿岩年代学及构造属性研究》(批准号:41502191)
详细信息
    作者简介: 李瑞保(1982-), 男, 博士, 副教授, 构造地质学专业。E-mail:liruibao0971@163.com
    通讯作者: 裴先治(1963-), 男, 博士, 教授, 从事构造地质学和区域地质学研究。E-mail:peixzh@263.net
  • 中图分类号: P534.41;P597+.3

Zircon U-Pb dating, geochemical characteristics and tectonic setting of intermediate-basic volcanic rocks from Middle Cambrian Shengou Formation, eastern Qilian orogen

More Information
  • 拉脊山构造带南东端磨沟地区出露一套变安山岩夹片理化变玄武岩组合,其原岩分别为亚碱性拉斑系列安山岩和玄武岩。研究表明,变安山岩锆石U-Pb年龄为503.1±6.6Ma,形成于中寒武世。玄武岩稀土元素总量为93.40×10-6~135.39×10-6,(La/Yb)N值为2.76~3.64,δEu为0.87~1.00,微量元素蛛网图具有不相容元素富集特征,没有明显的Nb、Ta负异常,与板内火山岩特征相似。安山岩稀土元素总量低于玄武岩,而微量元素蛛网图具有富集大离子亲石元素Cs、Rb、Ba等,亏损高场强元素Nb、Ta、Ti等特征。岩石成因研究表明,玄武岩没有经历显著的地壳混染,为软流圈地幔石榴子石+尖晶石二辉橄榄岩低程度部分熔融的产物,而安山岩为地壳部分熔融的产物。构造环境判别表明,深沟组火山岩形成于大陆裂谷环境,表明祁连地块中部的拉脊山构造带南东端可能没有发育成熟的洋盆系统,随后在南祁连洋早古生代俯冲消减过程中以裂谷型岩石圈碎片的方式构造侵位于中祁连地块南缘。

  • 加载中
  • 图 1  研究区地质简图(a)、区域构造简图(b)及研究区地质图(c)

    Figure 1. 

    图 2  祁连造山带东段深沟组实测地质剖面

    Figure 2. 

    图 3  变玄武岩与变安山岩宏观与显微特征

    Figure 3. 

    图 4  深沟组中基性火山岩岩石分类图解

    Figure 4. 

    图 5  深沟组中基性火山岩稀土元素配分图解(a)及微量元素蛛网图解(b) (OIB、E-MORB标准值据参考文献[45])

    Figure 5. 

    图 6  深沟组变安山岩锆石阴极发光(CL)图像

    Figure 6. 

    图 7  变安山岩锆石U-Pb年龄谐和图(a)和年龄加权平均值图(b)

    Figure 7. 

    图 8  深沟组中基性火山岩哈克图解

    Figure 8. 

    图 9  变玄武岩Nb/Yb-Th/Nb图解(a)和Ta/Yb-Th/Yb图解(b)

    Figure 9. 

    图 10  变玄武岩Zr/Nb-La/Yb源区判别图解(a)和Sm-Sm/Yb图解(b)

    Figure 10. 

    图 11  变玄武岩Zr/Y-Zr(a)、Ti/100-Zr-Y*3(b)、Tb*3-Th-Ta*2(c)、Th/Hf-Ta/Hf(d)判别图解

    Figure 11. 

    表 1  深沟组变玄武岩与变安山岩主量、微量和稀土元素分析结果

    Table 1.  Major, trace and rare earth elements concentrations of meta-basalt and meta-andesite in Shengou Formation

    样品 PM603/
    21DH1
    PM603/
    26DH1
    PM603/
    32DH1
    PM603/
    32DH2
    PM603/
    34DH1
    PM603/
    27DH1
    PM603/
    28DH2
    PM603/
    29DH1
    PM603/
    30DH1
    PM603/
    30DH3
    PM603/
    31DH1
    PM603/
    33DH1
    PM603/
    35DH3
    变玄武岩 变安山岩
    SiO2 46.05 45.03 48.35 47.74 45.85 58.21 56.02 57.88 55.37 57.40 56.46 55.63 56.85
    TiO2 2.30 2.51 2.56 2.73 2.02 0.47 0.49 0.48 0.58 0.49 0.44 0.51 0.38
    Al2O3 14.84 15.92 13.76 14.81 14.43 16.50 17.49 16.94 17.54 17.17 16.22 17.18 17.91
    TFe2O3 13.20 13.96 13.94 12.99 11.84 8.26 9.05 8.21 9.65 8.17 7.39 9.85 7.69
    MnO 0.20 0.23 0.23 0.20 0.22 0.19 0.19 0.16 0.17 0.16 0.19 0.18 0.15
    MgO 6.80 6.41 5.86 5.46 5.76 4.40 2.46 4.14 4.67 3.42 2.15 3.83 3.97
    CaO 10.56 10.36 8.50 7.74 8.06 4.48 6.17 3.50 2.90 4.18 7.16 6.33 3.27
    Na2O 2.20 2.42 3.78 4.86 3.84 3.37 7.18 4.91 4.64 5.34 4.75 2.24 6.43
    K2O 0.70 0.31 0.42 0.31 0.13 0.71 0.27 0.79 0.94 0.35 0.53 1.76 0.33
    P2O5 0.28 0.33 0.33 0.39 0.25 0.09 0.10 0.09 0.09 0.09 0.08 0.09 0.06
    烧失量 1.45 1.27 1.28 2.17 8.23 2.57 0.39 2.30 2.89 1.44 4.25 1.79 2.17
    总计 98.58 98.75 99.01 99.40 100.63 99.25 99.81 99.40 99.44 98.21 99.62 99.39 99.21
    Mg# 47.87 45.03 42.86 42.85 46.44 48.71 32.61 47.30 46.34 42.71 34.10 40.92 47.93
    Li 25.71 18.05 11.21 12.46 18.37 15.84 0.85 19.38 18.32 8.18 14.92 19.36 0.88
    Be 1.58 2.94 1.27 1.44 0.89 0.33 0.49 0.41 0.53 0.44 0.46 0.39 0.37
    Sc 36.82 33.45 40.59 44.65 36.83 16.70 20.29 19.74 24.32 21.12 23.32 30.52 13.65
    V 352.20 330.68 326.67 324.75 237.75 166.05 164.83 152.18 178.28 152.02 149.65 197.03 112.62
    Cr 248.06 168.48 125.99 127.73 197.89 10.95 11.73 5.62 14.18 4.77 10.42 16.81 30.22
    Co 55.75 53.88 44.63 48.72 36.66 20.58 23.27 19.72 24.71 19.42 18.03 23.44 21.76
    Ni 84.17 82.29 46.41 50.20 54.30 6.93 7.71 5.89 7.62 6.33 6.34 10.01 19.10
    Cu 88.40 29.11 59.29 167.38 84.22 370.12 77.99 33.57 5.54 76.18 9.00 11.04 5.24
    Zn 117.51 140.91 120.45 88.56 112.37 68.13 63.15 53.90 72.79 61.62 52.15 68.63 59.54
    Ga 22.57 22.29 19.02 21.35 16.61 14.23 15.67 13.19 13.95 13.73 13.98 15.39 10.96
    Rb 18.07 9.97 7.01 4.58 4.16 15.15 2.27 11.66 25.70 4.89 4.08 16.85 7.50
    Sr 328.34 281.09 235.63 191.54 183.73 257.90 321.40 317.80 296.26 361.39 243.96 123.79 179.51
    Y 32.70 41.96 35.02 35.91 29.46 11.92 13.93 12.47 13.39 20.10 12.09 13.43 5.92
    Zr 184.65 226.42 202.72 230.64 160.98 64.16 57.70 47.62 48.11 58.81 52.01 44.17 29.02
    Nb 16.96 21.32 17.83 21.91 12.85 2.12 2.15 1.70 1.90 1.91 1.99 1.74 1.06
    Mo 1.37 1.03 1.31 1.68 0.72 0.14 0.50 0.35 0.63 0.15 0.16 0.09 0.07
    Cd 0.27 0.33 0.31 0.20 0.20 0.25 0.11 0.03 0.06 0.14 0.08 0.09 0.03
    In 0.08 0.09 0.10 0.09 0.07 0.05 0.04 0.03 0.04 0.04 0.03 0.05 0.02
    Cs 6.69 3.13 2.12 1.92 2.20 3.62 0.79 4.13 6.15 1.65 2.93 9.99 1.75
    Ba 183.35 33.35 130.09 110.61 35.54 72.77 89.07 304.48 139.82 104.74 195.26 156.17 50.11
    La 13.25 17.15 15.72 19.38 12.21 4.88 5.04 4.05 4.58 4.48 4.30 4.64 1.41
    Ce 32.01 40.62 38.14 46.15 30.02 11.93 12.45 10.59 12.39 11.94 10.91 11.71 3.66
    Pr 4.34 5.37 5.20 6.20 4.06 1.51 1.64 1.45 1.56 1.56 1.46 1.63 0.49
    Nd 20.02 24.42 23.84 28.10 19.39 6.84 7.34 6.73 7.34 7.58 7.04 7.74 2.34
    Sm 5.27 6.48 6.13 6.93 5.03 1.85 1.96 1.89 1.89 2.00 1.84 1.93 0.67
    Eu 1.83 2.01 1.92 2.09 1.76 0.61 0.62 0.62 0.55 0.69 0.61 0.65 0.31
    Gd 6.11 7.35 7.18 7.65 5.82 1.98 2.18 2.02 2.27 2.21 2.01 2.29 0.81
    Tb 0.97 1.21 1.16 1.21 0.94 0.34 0.35 0.34 0.35 0.37 0.33 0.36 0.15
    Tb 0.97 1.21 1.16 1.21 0.94 0.34 0.35 0.34 0.35 0.37 0.33 0.36 0.15
    Dy 5.84 7.25 6.85 7.48 5.82 2.15 2.28 2.19 2.34 2.35 2.16 2.37 1.02
    Ho 1.19 1.51 1.39 1.44 1.17 0.44 0.48 0.46 0.51 0.50 0.45 0.51 0.21
    Er 3.33 4.29 3.86 4.09 3.32 1.37 1.49 1.47 1.56 1.54 1.41 1.55 0.68
    Tm 0.47 0.60 0.54 0.54 0.45 0.20 0.23 0.21 0.23 0.24 0.21 0.23 0.10
    Yb 2.89 3.82 3.51 3.59 2.98 1.39 1.52 1.47 1.64 1.58 1.50 1.56 0.73
    Lu 0.40 0.54 0.50 0.53 0.43 0.21 0.25 0.22 0.25 0.25 0.23 0.25 0.12
    Hf 4.19 5.05 4.91 5.67 4.05 1.76 1.63 1.44 1.46 1.70 1.54 1.32 0.82
    Ta 0.84 1.03 0.83 1.00 0.62 0.14 0.12 0.10 0.11 0.10 0.11 0.10 0.05
    Pb 2.07 3.03 3.84 3.38 3.08 6.63 2.41 1.72 1.65 2.76 4.35 1.82 2.98
    Bi 0.00 0.03 0.20 0.37 0.53 0.12 0.03 0.02 0.06 0.04 0.02 0.19 0.01
    Th 1.16 1.59 1.59 2.20 1.22 0.63 0.81 0.68 0.77 0.80 0.84 0.76 0.18
    U 0.48 0.55 0.51 0.72 0.40 0.32 0.38 0.29 0.34 0.39 0.35 0.30 0.12
    ∑REE 97.92 122.63 115.93 135.39 93.40 35.69 37.83 33.73 37.44 37.30 34.45 37.42 20.52
    δEu 0.98 0.89 0.88 0.87 0.99 0.96 0.92 0.97 0.80 1.00 0.96 0.95 1.02
    (La/Yb)N 3.10 3.03 3.02 3.64 2.76 2.37 2.23 1.85 1.88 1.91 1.94 2.00 1.52
    注:主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV

    表 2  深沟组变安山岩(PM603-27TW1) LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 2.  LA-ICP-MS zircon U-Th-Pb data of the meta-andesite in Shengou Formation (PM603-27TW1)

    样品 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb
    1 116.2 207 384.9 0.54 0.0783 0.0008 0.6846 0.0154 0.0634 0.0013 486 5 530 12 772 40
    2 148.9 133.1 381.9 0.35 0.0877 0.0009 1.2387 0.0243 0.1025 0.0019 542 5 818 16 1676 27
    3 144 241.2 304.5 0.79 0.0806 0.0008 1.0259 0.0191 0.0924 0.0015 499 5 717 13 1465 22
    4 131 245 324.4 0.76 0.0803 0.0008 0.8896 0.0151 0.0803 0.0013 498 5 646 11 1206 22
    5 106.8 216.6 393.4 0.55 0.0788 0.0008 0.5510 0.0173 0.0507 0.0015 489 5 446 14 220 67
    6 181.6 124.6 332 0.38 0.0878 0.0010 1.9097 0.0731 0.1578 0.0049 542 6 1084 42 2383 50
    7 114.7 211.3 380.3 0.56 0.0840 0.0008 0.6507 0.0122 0.0562 0.0010 520 5 509 10 454 26
    8 97.1 171.3 446.3 0.38 0.0806 0.0008 0.6445 0.0114 0.0580 0.0010 500 5 505 9 522 26
    9 103.5 168.3 436 0.39 0.0978 0.0010 0.8111 0.0123 0.0601 0.0008 602 6 603 9 476 44
    10 123.4 274.8 315.4 0.87 0.0974 0.0010 0.8075 0.0120 0.0601 0.0008 599 6 601 9 546 28
    11 111.5 194.6 401.5 0.48 0.0836 0.0008 0.6520 0.0153 0.0566 0.0013 518 5 510 12 767 41
    12 98.1 156.3 456 0.34 0.0772 0.0008 0.6132 0.0109 0.0576 0.0010 480 5 486 9 561 6
    13 103.9 170.1 433.8 0.39 0.0812 0.0008 0.7098 0.0178 0.0634 0.0014 503 5 545 14 661 71
    14 96.1 153.6 461.8 0.33 0.0823 0.0009 0.6653 0.0116 0.0586 0.0009 510 6 518 9 478 19
    15 123.1 272.2 317.4 0.86 0.0837 0.0009 0.6957 0.0255 0.0603 0.0021 518 5 536 20 413 37
    16 103.1 212.1 401.3 0.53 0.0834 0.0008 0.6479 0.0111 0.0564 0.0009 516 5 507 9 961 50
    17 95.3 171.6 447.6 0.38 0.0783 0.0008 0.5988 0.0119 0.0554 0.0010 486 5 476 9 239 74
    18 109.2 214.6 389 0.55 0.0807 0.0008 0.6548 0.0230 0.0588 0.0020 501 5 511 18 524 43
    19 127.9 279.7 302 0.93 0.0976 0.0010 0.8092 0.0121 0.0601 0.0008 600 6 602 9 744 31
    20 113.3 194.5 395.5 0.49 0.0976 0.0010 0.8094 0.0120 0.0601 0.0008 600 6 602 9 754 13
    21 115.3 203.7 384.3 0.53 0.0836 0.0008 0.5935 0.0191 0.0515 0.0016 517 5 473 15 872 37
    22 109.2 267.2 345.3 0.77 0.0805 0.0008 0.6402 0.0146 0.0577 0.0013 499 5 502 11 457 44
    23 97 183.8 433.5 0.42 0.0795 0.0008 0.6984 0.0136 0.0637 0.0012 493 5 538 10 574 12
    24 97.8 182.4 434.4 0.42 0.0850 0.0008 0.7742 0.0116 0.0661 0.0009 526 5 582 9 509 52
    25 157.1 179.6 328 0.55 0.0845 0.0008 0.7901 0.0189 0.0678 0.0014 523 5 591 14 1950 40
    26 121 253.3 337 0.75 0.0783 0.0008 0.6088 0.0142 0.0564 0.0012 486 5 483 11 1174 34
    27 101.7 206.5 406.7 0.51 0.0831 0.0008 0.6786 0.0102 0.0593 0.0008 514 5 526 8 587 33
    28 112 208.9 384.4 0.54 0.0821 0.0008 0.6537 0.0181 0.0577 0.0015 509 5 511 14 772 22
    29 124.8 308.5 282.6 1.09 0.0976 0.0010 0.8096 0.0119 0.0601 0.0008 601 6 602 9 554 11
    30 115.5 288 315.9 0.91 0.0976 0.0010 0.8090 0.0120 0.0601 0.0008 600 6 602 9 591 50
    31 71.6 335.3 376 0.89 0.0880 0.0009 1.4625 0.0411 0.1206 0.0031 543 5 915 26 198 101
    32 118.6 280.1 319 0.88 0.0747 0.0008 0.7990 0.0203 0.0775 0.0018 465 5 596 15 324 31
    33 112.6 190.1 400.3 0.47 0.0822 0.0008 0.6712 0.0136 0.0592 0.0011 509 5 521 11 917 62
    34 118.8 218.2 366 0.60 0.0860 0.0009 0.7881 0.0154 0.0665 0.0011 532 6 590 12 598 24
    35 111.6 233.8 369.8 0.63 0.0790 0.0008 0.6316 0.0089 0.0580 0.0007 490 5 497 7 494 25
    下载: 导出CSV
  • [1]

    任纪舜, 主编.中国及邻区大地构造图(1:5000000)[M].北京:地质出版社, 1997.

    [2]

    李春昱, 刘仰文, 朱宝清, 等. 秦岭及祁连山构造发展史. 国际交流地质学术论文集[C]//北京: 地质出版社, 1978: 174-178.

    [3]

    陈隽璐, 陈有仓, 李海平, 等.祁连与北秦岭结合部位陇山岩群与秦岭岩群对比讨论[J].陕西地质, 2002, 20(2):39-49. http://d.wanfangdata.com.cn/Periodical_sxdizhi200202005.aspx

    [4]

    冯益民, 曹宣锋, 张二朋, 等.西秦岭造山带的演化、构造格局和性质[J].西北地质, 2003, 36(1):1-10. https://www.wenkuxiazai.com/doc/cb4c1a106edb6f1aff001f85.html

    [5]

    许志琴, 杨经绥, 吴才来, 等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报, 2003, 77(2):163-176. http://www.cqvip.com/QK/95080X/2003002/7835676.html

    [6]

    肖序常, 陈国铭, 朱志直.祁连山古蛇绿岩的地质构造意义[J].地质学报, 1978, 54(4):287-295. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe197804002&dbname=CJFD&dbcode=CJFQ

    [7]

    李猛, 王超, 李荣社, 等.祁连山西段新元古代晚期花岗质片麻岩成因及LA-ICP-MS锆石U-Pb定年[J].地质通报, 2015, 34(8):1438-1446. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20150804&flag=1

    [8]

    冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996:1-266.

    [9]

    夏林圻, 夏祖春, 徐学义.北祁连山海相火山岩岩石成因[M].北京:地质出版社, 1996:1-234.

    [10]

    夏林圻, 夏祖春, 徐学义.北祁连山元古宙末—寒武纪主动大陆裂谷火山作用[J].地球学报, 1996, 17:282-292. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb603.009&dbname=CJFD&dbcode=CJFQ

    [11]

    夏林圻, 李向民, 余吉远, 等.祁连山新元古代中—晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4):1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html

    [12]

    许志琴, 徐惠芳.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J].地质学报, 1994, 68(1):1-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe199401000&dbname=CJFD&dbcode=CJFQ

    [13]

    宋述光.北祁连山俯冲杂岩带的构造演化[J].地球科学进展, 1997, 12:351-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxjz704.007&dbname=CJFD&dbcode=CJFQ

    [14]

    宋述光, 张聪, 李献华, 等.柴北缘超高压带中锡铁山榴辉岩的变质时代[J].岩石学报, 2011, 27(4):1191-1197. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20110423

    [15]

    Song S G, Zhang L F, Niu Y L, et al. Evolution from oceanicsubduction to continental collision:a case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. J. Petrol., 2006, 47:435-455. doi: 10.1093/petrology/egi080

    [16]

    Song S G, Niu Y L, Su L, et al. Continental orogenesis fromocean subduction, continental collisionsubduction, to orogencollapse, and recycling:The example of the North Qaidam UHPM-belt, NW China[J]. Earth Sci. Rev., 2014, 129:59-84. doi: 10.1016/j.earscirev.2013.11.010

    [17]

    Yang J S, Xu Z Q, Song S G, et al. Brunel, M. Discovery of coesite in the North Qaidam Early Paleozoic ultrahigh pressure (UHP) metamorphic belt, NW China[J]. C. R. Acad. Sci. Ⅱ Fascicule Sci. Terre Planets, 2001, 333:719-724. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE200102004.htm

    [18]

    Xia L Q, Xia Z C, Xu X Y. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China[J]. Geol. Soc. Am. Bull., 2003, 115:1510-1522. doi: 10.1130/B25269.1

    [19]

    Yan Z, Aitchison J, Fu C L, et al. Hualong Complex, South Qilian terrane:U-Pb and Lu-Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Ththyan margin[J]. Precambrian Research, 2015, 266:65-85. doi: 10.1016/j.precamres.2015.05.001

    [20]

    牛广智, 黄岗, 邓昌生, 等.青海南祁连巴龙贡噶尔组变火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2016, 35(9):1441-1447. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20160906&flag=1

    [21]

    冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996.

    [22]

    葛肖虹, 刘俊来.北祁连造山带的形成与背景[J].地学前缘, 1999, 6(4):223-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199904004

    [23]

    张雪婷, 杨生德.青海省区域地质概论——1:100万青海省地质图说明书[M].北京:地质出版社, 2007.

    [24]

    夏林圻, 夏祖春, 任有祥, 等.祁连、秦岭山系海相火山岩[M].武汉:中国地质大学出版社, 1991.

    [25]

    邱家骧, 曾广策, 王思源, 等.拉脊山早古生代海相火山岩与成矿[M].武汉:中国地质大学出版社, 1996.

    [26]

    杨巍然, 邓清禄, 吴秀玲.拉脊山造山带断裂作用特征及与火山岩、蛇绿岩套的关系[J].地质科技情报, 2000, 19(6):5-11. http://d.wanfangdata.com.cn/Periodical_dzkjqb200002002.aspx

    [27]

    Song S G, Niu Y L, Su L, et al. Tectonics of the North Qilianorogen, NW China[J]. Gondwana Res., 2013, 23:1378-1401. doi: 10.1016/j.gr.2012.02.004

    [28]

    王二七, 张旗, Burchfiel C B, 青海拉脊山:一个多阶段抬升的构造窗[J].地质科学, 2000, 35(4):493-500.

    [29]

    侯青叶, 张宏飞, 张本仁, 等.祁连造山带中部拉脊山谷底满特征及其归属:来自基性火山岩的地球化学证据[J].地球科学, 2005, 30(1):61-70.

    [30]

    闫臻, 王宗起, 李继亮, 等.西秦岭楔的构造属性及其增生造山过程[J].岩石学报, 2012, 6:1808-1828. https://www.wenkuxiazai.com/doc/b46ffae9ce2f0066f533229a-2.html

    [31]

    付长垒, 闫臻, 郭现轻, 等.拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄[J].岩石学报, 2014, 6:1695-1706. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406012.htm

    [32]

    Wang T, Wang Z Q, Yan Z, et al. Geochronological and Geochemical evidence of amphibolite from the Hualong Group, northwest China:Implicaton for the early Paleozoic accretionary tectonics of the Central Qilian belt[J]. Lithos, 2016, 248/251:12-21. doi: 10.1016/j.lithos.2016.01.012

    [33]

    李文渊. 祁连山岩浆作用有关硫化金属矿床成矿与找矿[D]. 西北大学博士学位论文, 2004.http://cdmd.cnki.com.cn/Article/CDMD-10697-2005151805.htm

    [34]

    高永宝, 李文渊, 谢燮, 等.青海化隆地区拉水峡铜镍矿床地质、地球化学特征及成因[J].地质通报, 2012, 31(5):763-772. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20120513&flag=1

    [35]

    张照伟, 李文渊, 高永宝, 等.青海省拉水峡基性杂岩体地球化学特征及其对矿床成因的约束[J].地质与勘探, 2012, 48(5):959-968. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201205013.htm

    [36]

    徐旺春, 张宏飞, 柳小明.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J].科学通报, 2007, 52(10):1174-1180. doi: 10.3321/j.issn:0023-074X.2007.10.014

    [37]

    何世平, 李荣社, 王超, 等.南祁连东段化隆岩群形成时代的进一步限定[J].岩石矿物学杂志. 2011, 30(1):34-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201101004

    [38]

    余吉远, 李向民, 马中平, 等.南祁连化隆岩群LA-ICP-MS锆石U-Pb年龄及其地质意义[J].西北地质, 2012, 45(1):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201201011

    [39]

    王涛, 马振慧, 王宗起, 等.中祁连拉脊山早古生代沉积岩源区和时代限定[J].地质学报, 2016, 9(90):2316-2333. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201609017.htm

    [40]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-incluced melt-peridoite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace element in zircon from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    [41]

    Ludwig K R. Isoplot/Ex version 2.49:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2001, 1a:1-56. http://www.oalib.com/references/17368596

    [42]

    李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICP MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, S1:600-601. doi: 10.3321/j.issn:1000-4734.2009.z1.311

    [43]

    Wilson M. Igneous Petrogenesis:a global tectonic approach[M]. London:Unwin Hyman, 1989:1-466.

    [44]

    Rapp R P. Heterogeneous source regions for Archean granitoids[C]//Wit M J, Ashwal L D. Green Stone Belts. Oxford: Oxford University Press, 1997: 35-37.

    [45]

    Taylor S R, McClennan S. The continental crust:composition and evolution (vol.54)[M]. Boston:Blackwell Scientific Publications, 1985:209-230.

    [46]

    朱弟成, 潘桂棠, 莫宣学, 等.特提斯喜马拉雅带中段东部三叠系火山岩的地球化学和岩石成因[J].岩石学报, 2006, 22(4):804-816. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200604005.htm

    [47]

    Graham I J, Cole J W, Briggs R M, et al. Petroloy and petrogenesis of volcanic rocks from the Taupo Volcanic Zone:A review[J]. Journal of Vocanology and Geothermal Research, 1995, 68(1/3):59-87. https://www.sciencedirect.com/science/article/pii/037702739500008I

    [48]

    Morra V, Secchi F A G, Melluso L, et al. High-Mg subduction-related tertiary basalts in Sardinia, Italy[J]. Lithos, 1997, 40(1):69-91. doi: 10.1016/S0024-4937(96)00028-X

    [49]

    Naumann T R, Geist D J. Generation of alkali basalt by crystal fractionation of tholeiitic magma[J]. Geology, 1999, 27(5):423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2

    [50]

    Grove T L, Donnelly-Nolan J M. The evolution of young silicic lavas at Medicine Lake Volcano, California:Implications for the origin of compositional gaps in calc-alkaline series lavas[J]. Contributions to Mineralogy and Petrology, 1986, 92:281-302. doi: 10.1007/BF00572157

    [51]

    Mc Donough W F. Constraints on the composition of the continental lithopheric mantle[J]. Earth Planet. Sci. Lett., 1990, 101:1-18. doi: 10.1016/0012-821X(90)90119-I

    [52]

    Humphreys E R, Niu Y L. On the composition ofocean island basalts (OIB):The effects of lithospheric thicknessvariation and mantle metasomatism[J]. Lithos, 2009, 112:118-136. doi: 10.1016/j.lithos.2009.04.038

    [53]

    McKenzie D P, O'Nions R K. Partial melt distributionsfrom inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32:1021-1091. doi: 10.1093/petrology/32.5.1021

    [54]

    Grove T L, Donnelly-Nolan J M. The evolution of young silicic lavas at Medicine Lake Volcano, California:Implications for the origin of compositional gaps in calc-alkaline series lavas[J]. Contributions to Mineralogy and Petrology, 1986, 92:281-302. doi: 10.1007/BF00572157

    [55]

    Macdonald R, Sparks R S J, Sigurdsson H, et al. The 1875 eruption of Askjavocano, Iceland:Combined fractional crystallization and selective contamination in the generation of rhyolitic magma[J]. Mineralogical Magazine, 1987, 51:183-202. doi: 10.1180/minmag

    [56]

    Brouxel M, Lapoerre H, Michard A, et al. The deep layers of a Paleozoic arc:Geochemistry of the Copley-Blaklala series, northern California[J]. Earth and Planetary Science Letters, 1987, 85:386-400. doi: 10.1016/0012-821X(87)90135-X

    [57]

    Holmes A. The problem of the association of acid and basic rocks in central complexes[J]. Geological Magazine, 1931, 68:241-255. doi: 10.1017/S0016756800087197

    [58]

    Sigurdsson H. Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer[J]. Nature, 1997, 269:26-28. http://www.nature.com/nature/journal/v269/n5623/abs/269025a0.html

    [59]

    邓清禄, 周雁, 杨巍然.拉脊山早古生代火山岩盆地开合演化岩石地球化学标志[J].西北地质科学, 1995, 16(1):84-91. http://www.cnki.com.cn/Article/CJFDTOTAL-XBFK501.005.htm

    [60]

    邱家骧, 曾广策, 朱云海, 等.北秦岭-南祁连早古生代裂谷造山带火山岩与小洋盆蛇绿岩套特征及纬向对比[J].高校地质学报, 1998, 4(4):393-405. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX804.003.htm

    [61]

    吴才来, 杨经绥, Ireland T, 等.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义[J].岩石学报, 2001, 17(2):215-221. http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_ysxb98200102005

    [62]

    袁桂邦, 王懋功, 李惠民, 等.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义[J].前寒武纪研究进展, 2002, 25(1):36-40. http://d.wanfangdata.com.cn/Periodical_qhwjyjjz200201005.aspx

    [63]

    Zhang J X, Yang J S, Mattinson C G, et al. Two constrastingeclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotopic constraints[J]. Lithos, 2005, 84:51-76. doi: 10.1016/j.lithos.2005.02.002

    [64]

    Zhang J X, Meng F C, Wan Y S. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints[J]. Metamor. Geol., 2007, 25:285-304. doi: 10.1111/jmg.2007.25.issue-3

    [65]

    Zhang J X, Mattinson C G, Yu S Y, et al. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China:spatially and temporally extensive UHP metamorphism during continental subduction[J]. Metamorph. Geol., 2010, 28:955-978. doi: 10.1111/jmg.2010.28.issue-9

    [66]

    Mattinson C G, Wooden J L, Liou J G, et al. Age and duration of eclogite-facies metamorphism, North Qaidam HP/UHP terrane, western China[J]. American J. Sci., 2006, 306:683-711. doi: 10.2475/09.2006.01

    [67]

    陈丹玲, 孙勇, 刘良, 等.柴北缘野马滩超高压地体的成因——年代学研究结果的约束[J].西北大学学报(自然科学版), 2009, 39(4):631-638. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200904030.htm

    [68]

    Song S G, Zhang L F, Niu Y L, et al. Geochronology of diamondbearing zircons from garnet- peridotite in the North Qaidam UHPM belt, North Tibetan Plateau:a record of complex histories associated with continental collision[J]. Earth. Planet. Sci. Lett., 2005, 234:99-118. doi: 10.1016/j.epsl.2005.02.036

    [69]

    许志琴, 杨经绥, 吴才来, 等.柴达木北缘超高压变质带形成与折返的时限及机制[J].地质学报, 2003, 77(2):163-176. http://www.cqvip.com/QK/95080X/2003002/7835676.html

    [70]

    樊光明, 雷东宁.祁连山东南段加里东造山期构造变形年代的精确限定及其意义[J].科学通报, 2007, 32(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200701005

    张克信, 朱云海. 1: 25万临夏市幅区域地质调查报告. 中国地质大学(武汉), 2006.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1390
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2017-07-07
修回日期:  2018-03-02
刊出日期:  2018-04-25

目录