青海南祁连科克岩体地球化学特征及其形成时代

袁勇, 孙东亮, 李大磊, 李小明, 付渝. 青海南祁连科克岩体地球化学特征及其形成时代[J]. 地质通报, 2018, 37(4): 613-620.
引用本文: 袁勇, 孙东亮, 李大磊, 李小明, 付渝. 青海南祁连科克岩体地球化学特征及其形成时代[J]. 地质通报, 2018, 37(4): 613-620.
YUAN Yong, SUN Dongliang, LI Dalei, LI Xiaoming, FU Yu. Geochemical characteristics and formation age of Keke Pluton in South Qilian Mountain, Qinghai Province[J]. Geological Bulletin of China, 2018, 37(4): 613-620.
Citation: YUAN Yong, SUN Dongliang, LI Dalei, LI Xiaoming, FU Yu. Geochemical characteristics and formation age of Keke Pluton in South Qilian Mountain, Qinghai Province[J]. Geological Bulletin of China, 2018, 37(4): 613-620.

青海南祁连科克岩体地球化学特征及其形成时代

  • 基金项目:
    中国地质调查局项目《祁连成矿带肃南—大柴旦地质矿产调查项目》(编号:12120114018101)
详细信息
    作者简介: 袁勇(1990-), 男, 助理工程师, 从事区域地质调查及矿产勘查工作。E-mail:392002644@qq.com
  • 中图分类号: P595;P597+.3

Geochemical characteristics and formation age of Keke Pluton in South Qilian Mountain, Qinghai Province

  • 为探讨南祁连喀克图蒙克山科克岩体的构造属性,对南祁连喀克图蒙克山中奥陶世科克岩体进行了详细的地球化学和定年研究。研究结果表明,该岩体主体岩性为正长花岗岩,具有高SiO2(68.41%~73.10%)、高Al2O3(13.03%~14.35%)的特征,亏损高场强元素Nb、P、Ti和重稀土元素,发育明显的负Eu异常,反映岩石经历了强烈的分离结晶作用,其稀土元素配分曲线类型与壳源花岗岩相似;构造成因分类图解表明,这些花岗岩属同碰撞环境的产物。LA-ICP-MS锆石U-Pb测年结果表明,岩体形成于461±2.7Ma,时代为中奥陶世,表明该岩体的源岩为壳源或壳幔混合的产物。结合区域地质特征认为,该岩体为同碰撞作用的产物,佐证了南祁连地块在奥陶纪处于挤压状态,对进一步研究南祁连造山带的演化具有重要意义。

  • 加载中
  • 图 1  研究区地质图及采样位置

    Figure 1. 

    图 2  科克岩体野外露头(a)和显微照片(b)(40×, d=5mm, 正交)

    Figure 2. 

    图 3  R1-R2分类命名图解

    Figure 3. 

    图 4  科克岩体微量元素原始地幔标准化蛛网图和稀土元素原始地幔标准化分布型式(原始地幔标准化值据参考文献[12])

    Figure 4. 

    图 5  正长花岗岩锆石阴极发光(CL)图像

    Figure 5. 

    图 6  科克侵入岩锆石U-Pb谐和图和锆石206Pb/238U年龄

    Figure 6. 

    图 7  R1-R2构造环境判别图

    Figure 7. 

    表 1  科克侵入岩主量、微量和稀土元素含量及特征值

    Table 1.  Major, trace, REE compositions features in Keke pluton

    样品编号 PM17-YQ1 PM17-YQ2 PM17-YQ3 PM17-YQ4 PM17-YQ5 PM17-YQ6 PM17-YQ7
    SiO2 73.10 69.91 70.00 69.74 69.05 68.41 72.50
    Al2O3 13.03 13.40 13.54 13.49 14.35 13.67 14.14
    Fe2O3 0.73 1.24 1.13 1.07 0.99 0.79 0.44
    FeO 1.55 3.25 3.21 3.09 2.44 3.83 1.63
    CaO 1.10 1.95 1.85 2.25 2.00 1.95 1.80
    MgO 0.37 0.59 0.60 0.69 0.66 1.05 0.48
    K2O 5.77 4.14 4.31 4.88 5.63 4.57 5.30
    Na2O 2.67 2.84 2.85 2.26 2.51 2.60 2.58
    TiO2 0.31 0.62 0.62 0.62 0.63 0.71 0.33
    P2O5 0.10 0.14 0.14 0.14 0.14 0.20 0.10
    MnO 0.05 0.08 0.08 0.09 0.07 0.09 0.05
    烧失量 0.93 1.22 1.08 1.06 1.11 1.52 0.71
    H2O+ 0.68 1.20 1.12 1.18 1.06 1.36 0.42
    TFe2O3 2.45 4.85 4.70 4.50 3.70 5.05 2.25
    总计 0.98 1.01 1.01 1.01 1.01 1.01 1.01
    A/CNK 1.03 1.06 1.07 1.03 1.04 1.07 1.07
    SI 3.34 4.89 4.96 5.76 5.40 8.18 4.60
    AR 2.22 2.17 2.18 1.81 1.89 2.00 1.96
    σ 2.36 1.81 1.90 1.91 2.55 2.01 2.11
    R1 2513.00 2555.00 2515.00 2572.00 2276.00 2450.00 2588.00
    R2 393.00 503.00 495.00 539.00 527.00 536.00 490.00
    DI 89.72 81.02 81.55 80.03 82.10 78.84 85.29
    Rb 37.1 78.8 73.5 76.2 62.5 73.5 38.8
    K 47900 34368 35779 40511 46737 37938 43998
    Ba 937 1080 1090 1220 1100 957 560
    Th 20.3 26.9 27.1 31.1 42.6 7 24.6
    U 1.3 1.85 1.88 2 1.94 1.44 2.83
    Nb 11 15.2 16.9 18.4 24.7 21.5 9.14
    La 65.94 102.31 151 116.24 124.53 107.03 75.1
    Ce 118.36 166.96 227 203.11 187.57 130.09 128
    Sr 92.4 161 157 170 104 140 128
    Nd 43.58 70.92 111.6 81.09 71.69 69.88 52.81
    Zr 166 342 320 337 531 214 132
    Hf 5.85 9.76 9.83 9.58 15.1 6.77 5.79
    Sm 7.96 12.92 18.27 14.37 13.42 14.53 10.59
    Ti 1858 3717 3717 3717 3777 4257 1978
    Y 39.78 57.02 60.71 57.24 52.49 72.86 53.28
    Yb 4.36 5.78 5.83 5.69 4.53 6.31 4.43
    Lu 0.67 0.86 0.86 0.86 0.72 0.94 0.65
    La 65.94 102.31 151 116.24 124.53 107.03 75.1
    Ce 118.36 166.96 227 203.11 187.57 130.09 128
    Pr 11.77 19.04 30.19 21.89 20 18.47 14.71
    Nd 43.58 70.92 111.6 81.09 71.69 69.88 52.81
    Sm 7.96 12.92 18.27 14.37 13.42 14.53 10.59
    Eu 1.08 2.38 2.71 2.48 1.91 3.27 1.71
    Gd 7.32 11.51 16.17 12.94 11.88 13.7 9.84
    Tb 1.32 2.06 2.67 2.24 2.06 2.63 1.83
    Dy 6.75 10.04 11.97 10.69 10.19 12.93 9.06
    样品号 PM17-1 PM17-2 PM17-3 PM17-4 PM17-5 PM17-6 PM17-7
    Ho 1.25 1.77 1.99 1.82 1.88 2.39 1.7
    Er 3.64 5.05 5.69 5.2 4.89 6.56 4.74
    Tm 0.68 0.87 0.93 0.91 0.76 1.08 0.76
    Yb 4.36 5.78 5.83 5.69 4.53 6.31 4.43
    Lu 0.67 0.86 0.86 0.86 0.72 0.94 0.65
    Y 39.78 57.02 60.71 57.24 52.49 72.86 53.28
    ΣREE 274.66 412.48 586.86 479.53 456.02 389.79 315.93
    LREE 248.69 374.54 540.77 439.17 419.12 343.27 282.93
    HREE 25.97 37.94 46.09 40.36 36.9 46.53 33
    LREE/HREE 9.57 9.87 11.73 10.88 11.36 7.38 8.57
    LaN/YbN 14.26 16.68 24.43 19.24 25.88 15.98 15.99
    δEu 0.46 0.63 0.51 0.58 0.49 0.75 0.54
    δCe 0.74 0.67 0.6 0.71 0.64 0.51 0.69
    注:测试单位为国土资源部西安矿产资源监督检测中心;主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV

    表 2  正长花岗岩岩体锆石U-Th-Pb测试结果

    Table 2.  Zircon U-Th-Pb analytical results of syenogranite

    测点编号 元素含量/10-6 Th/
    U
    同位素比值 年龄/Ma 谐和度
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    测值 测值 测值 测值 测值 测值
    1 75 429 726 0.59 0.0553 0.0014 0.5328 0.0133 0.0700 0.0007 433 54 434 9 436 4 99%
    2 46 208 369 0.57 0.0803 0.0039 0.8620 0.0523 0.0743 0.0010 1206 96 631 29 462 6 69%
    3 38 206 358 0.58 0.0586 0.0018 0.5634 0.0176 0.0699 0.0009 554 67 454 11 436 5 95%
    4 66 236 717 0.33 0.0585 0.0012 0.5660 0.0123 0.0700 0.0006 550 46 455 8 436 3 95%
    5 60 221 592 0.37 0.0569 0.0016 0.5779 0.0153 0.0741 0.0007 487 56 463 10 461 4 99%
    6 43 246 334 0.74 0.0554 0.0017 0.5806 0.0194 0.0761 0.0012 428 66 465 12 473 7 98%
    7 61 264 594 0.44 0.0564 0.0013 0.5771 0.0139 0.0742 0.0008 478 50 463 9 462 5 99%
    8 105 364 1198 0.30 0.0562 0.0011 0.5415 0.0110 0.0699 0.0006 461 44 439 7 436 4 99%
    9 55 206 577 0.36 0.0582 0.0015 0.5640 0.0157 0.0700 0.0006 539 57 454 10 436 4 95%
    10 47 179 452 0.40 0.0585 0.0015 0.5939 0.0139 0.0745 0.0009 550 56 473 9 463 5 97%
    11 68 437 521 0.84 0.0570 0.0016 0.5528 0.0146 0.0706 0.0007 500 63 447 10 440 4 98%
    12 49 223 421 0.53 0.0696 0.0019 0.6883 0.0197 0.0716 0.0007 917 57 532 12 446 4 82%
    13 90 619 698 0.89 0.0638 0.0014 0.6197 0.0136 0.0706 0.0007 744 51 490 9 440 4 89%
    14 46 227 380 0.60 0.0571 0.0017 0.5838 0.0171 0.0741 0.0006 494 69 467 11 461 4 98%
    15 91 629 706 0.89 0.0628 0.0013 0.5693 0.0116 0.0656 0.0005 702 44 458 8 409 3 88%
    16 139 356 782 0.45 0.0693 0.0012 1.1547 0.0247 0.1200 0.0014 909 36 779 12 731 8 93%
    17 52 147 506 0.29 0.0831 0.0028 0.8243 0.0300 0.0710 0.0007 1272 67 610 17 442 4 68%
    18 49 228 426 0.53 0.0563 0.0015 0.5760 0.0153 0.0742 0.0008 465 57 462 10 461 5 99%
    19 47 301 354 0.85 0.0551 0.0016 0.5648 0.0164 0.0745 0.0008 417 65 455 11 463 5 98%
    20 40 192 381 0.50 0.0562 0.0016 0.5458 0.0154 0.0705 0.0007 461 61 442 10 439 4 99%
    21 55 275 504 0.55 0.0567 0.0013 0.5499 0.0131 0.0703 0.0006 480 52 445 9 438 4 98%
    22 41 187 357 0.52 0.0576 0.0021 0.5880 0.0217 0.0739 0.0006 522 80 470 14 460 4 97%
    23 48 234 438 0.53 0.0550 0.0014 0.5317 0.0128 0.0703 0.0006 413 49 433 8 438 4 98%
    24 57 286 519 0.55 0.0558 0.0013 0.5348 0.0126 0.0697 0.0006 456 54 435 8 435 4 99%
    25 119 533 1087 0.49 0.0738 0.0023 0.6903 0.0232 0.0675 0.0005 1035 62 533 14 421 3 76%
    26 50 247 403 0.61 0.0559 0.0013 0.5716 0.0139 0.0742 0.0006 450 54 459 9 461 4 99%
    27 65 233 692 0.34 0.0575 0.0012 0.5566 0.0126 0.0702 0.0006 522 51 449 8 437 4 97%
    28 65 281 642 0.44 0.0559 0.0011 0.5411 0.0107 0.0704 0.0006 456 17 439 7 438 3 99%
    29 55 264 502 0.53 0.0554 0.0013 0.5664 0.0131 0.0744 0.0007 428 52 456 8 462 4 98%
    30 53 266 488 0.54 0.0569 0.0014 0.5482 0.0133 0.0700 0.0007 487 52 444 9 436 4 98%
    下载: 导出CSV
  • [1]

    许志琴, 杨经绥, 姜枚, 等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘, 1999, 6(3): 139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199903014

    [2]

    樊光明, 雷东宁.祁连山东南段加里东造山期构造变形年代的精确限定及其意义[J].地球科学, 中国地质大学学报, 2007, 32(1): 39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200701005

    [3]

    冯益民, 何世平.祁连山大地构造与造山作用[M].北京:地质出版社, 1996.

    [4]

    张博文. 青海南祁连造山带内生金属矿床成矿作用研究[D]. 吉林大学博士学位论文, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10183-2011014686.htm

    [5]

    夏林圻, 李向民, 余吉远, 等.祁连山新元古代中—晚期至早古生代火山作用与构造演化[J].中国地质, 2016, 43(4): 1087-1138. http://www.cqvip.com/QK/90050X/201604/669848882.html

    [6]

    宋述光.北祁连山俯冲杂岩带的构造演化[J].地球科学进展, 1997, 12(4): 351-365. http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1997.04.0351

    [7]

    邱家骧, 曾广策, 朱云海, 等.北秦岭—南祁连早古生代裂谷造山带火山岩与小洋盆蛇绿岩套特征及纬向对比[J].高校地质学报, 1998, 4(4): 34-36. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX804.003.htm

    [8]

    董国安, 杨怀仁, 杨宏仪, 等.祁连地块前寒武纪基底锆石SHR IMP U- Pb年代学及其地质意义[J].科学通报, 2007, 52(13): 1572-1585. doi: 10.3321/j.issn:0023-074X.2007.13.015

    [9]

    青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社, 1997.

    [10]

    李荣社, 计文化, 潘晓萍, 等.昆仑山及邻区地质图[M].北京:地质出版社, 2008.

    [11]

    黄瑞华.祁连山地区大地构造演化及其性质特征[J].大地构造与成矿学, 1996, 20(2): 95-104. http://www.oalib.com/paper/4892200

    [12]

    李怀坤, 耿建珍, 郝爽, 等, 用激光烧蚀多接收器等离子质谱仪测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, Z1(增刊): 600-602. http://mall.cnki.net/magazine/Article/KWXB2009S1311.htm

    [13]

    Compston W, Williams I S, Meyer C. U- Pb gesochronology of zir- cons from lunar breccia 73217 using a sensitive high massreso- lution ion microprobe[C]//Proceedings of the 14th Lunar and Planetary Science Conference, Part 2. J Geophys. Res., 1984, 89: 525-534.

    [14]

    Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U- Pb geochronology[J]. Chem Geol., 2003, 200: 155-170. doi: 10.1016/S0009-2541(03)00165-7

    [15]

    Ludwig K R. Isoplot/Ex version 2. 4. A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochron Centre Spec. Publ., 2000: 1-56.

    [16]

    De La Roche H, Leterrier J, Grandclaude P, et al. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analysis-its relationships and current nomenclature[J]. Chemical Geology, 1980, 29:183-210. doi: 10.1016/0009-2541(80)90020-0

    [17]

    李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992: 108-109.

    [18]

    王中刚.稀土元素地球化学[M].北京:科学出版社, 1989: 78-99.

    [19]

    涂光炽, 等.地球化学[M].上海:上海科学技术出版社, 1984.

    [20]

    卢欣祥, 孙延贵, 张雪亭, 等.柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄[J].地质学报, 2007, 81(5): 626-634. http://d.wanfangdata.com.cn/Periodical_dizhixb200705006.aspx

    [21]

    马旭东, 陈丹玲.柴达木盆地北缘超高压变质岩的围岩长英质片麻岩LA-ICP-MS锆石U-Pb定年[J].地质通报, 2006, 25(1): 99-103. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20060115&flag=1

    [22]

    王惠初, 陆松年, 袁桂邦, 等.柴达木盆地北缘滩间山群的构造属性及形成时代[J].地质通报, 2003, 22(7): 487-493. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20030794&flag=1

    [23]

    吴才来, 郜源红, 吴锁平, 等.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J].岩石学报, 2007, 23(8): 1861-1875. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200708178

    [24]

    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemistry Geology, 1985, 50: 63-81. https://www.sciencedirect.com/science/article/pii/0009254185900348

    青海省地质局. 中华人民共和国区域地质调查报告——怀头他拉幅(1: 20万). 西宁: 青海省地质局, 1976.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  342
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2017-06-10
修回日期:  2017-08-12
刊出日期:  2018-04-25

目录