隐伏断层在强震砂土液化中的作用——以2008年汶川Mw 7.9地震为例

王鹏, 刘静, 张智慧, 李志刚, 张金玉, 王伟, 邢秀臣. 隐伏断层在强震砂土液化中的作用——以2008年汶川Mw 7.9地震为例[J]. 地质通报, 2018, 37(5): 747-758.
引用本文: 王鹏, 刘静, 张智慧, 李志刚, 张金玉, 王伟, 邢秀臣. 隐伏断层在强震砂土液化中的作用——以2008年汶川Mw 7.9地震为例[J]. 地质通报, 2018, 37(5): 747-758.
WANG Peng, LIU Jing, ZHANG Zhihui, LI Zhigang, ZHANG Jinyu, WANG Wei, XING Xiuchen. The role of blind fault in soil liquefaction during strong earthquake: A case study of the 2008 Wenchuan Mw7.9 earthquake[J]. Geological Bulletin of China, 2018, 37(5): 747-758.
Citation: WANG Peng, LIU Jing, ZHANG Zhihui, LI Zhigang, ZHANG Jinyu, WANG Wei, XING Xiuchen. The role of blind fault in soil liquefaction during strong earthquake: A case study of the 2008 Wenchuan Mw7.9 earthquake[J]. Geological Bulletin of China, 2018, 37(5): 747-758.

隐伏断层在强震砂土液化中的作用——以2008年汶川Mw 7.9地震为例

  • 基金项目:
    国家自然科学基金项目《大陆型高原边界地形演化的对比研究》(批准号:41761144065)和川滇国家地震监测预报实验场项目《构造演化模型、地块模型和断裂廊带LIDAR实验》(编号:2017CESE0102)
详细信息
    作者简介: 王鹏(1982-), 男, 硕士, 工程师, 从事活动构造与构造地貌研究。E-mail:wpeng0909@126.com
  • 中图分类号: P315.2

The role of blind fault in soil liquefaction during strong earthquake: A case study of the 2008 Wenchuan Mw7.9 earthquake

  • 2008年汶川Mw7.9地震的强地面震动在龙门山前地区造成大量的砂土液化、喷砂冒水等地震灾害现象。震后野外调查发现,砂土液化点主要分布于地下水位只有几米深的山前河流的低阶地处,以大面积砾性土液化为特征,约58%的液化点位于距北川断层20~35km的范围内。对喷水高度及喷水过程进行了详细记录,喷水高度与峰值加速度并没有明显的相关性,喷水高度异常点(>2m)集中于山前断裂系统近地表投影处。汶川地震中喷水高度异常、砾性土液化的位置与山前断裂系统的吻合性说明,沉积盆地内的地质构造可能在砂土液化强度和与震动相关的地震灾害方面起到促进作用,所以在类似的地质和水文环境中,除主震的断层错动外,应考虑地质构造在地震危险性评估和建筑物抗震设计中的重要作用。

  • 加载中
  • 图 1  青藏高原及周边地区构造地貌、主要活动断裂图(a)和龙门山地区构造地貌与主要活动断裂图(b)

    Figure 1. 

    图 2  汶川地震砂土液化点分布及区域地质图(a)和区域地震地质剖面A-A′(b)

    Figure 2. 

    图 3  研究区地下水位等值线图(m)

    Figure 3. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 4  次级剖面(A-G)区域地质图及液化点分布情况

    Figure 4. 

    图 5  喷水高度与地下水位(a)、PGA(b)、距北川断层的垂直距离(c)关系图

    Figure 5. 

    图 6  喷水高度与深部地质构造的空间相互关系

    Figure 6. 

  • [1]

    Ambrasey N, Sarma S. Liquefaction of soils induced by earthquakes[J]. Bulletin of the Seismological Society of America, 1969, 59(2):651-664.

    [2]

    Ishihara K. Liquefaction and flow failure during earthquakes[J]. Geotechnique, 1993, 43(3):351-415. doi: 10.1680/geot.1993.43.3.351

    [3]

    Obermeier S F. Use of liquefaction-induced features for paleoseismic analysis-An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo- earthquakes[J]. Engineering Geology, 1996, 44(1/4):1-76. https://www.deepdyve.com/lp/elsevier/use-of-liquefaction-induced-features-for-paleoseismic-analysis-an-WV17EeN2kL

    [4]

    Youd T L, Idriss I M, Andrus R D, et al. Liquefaction resistance of soils:Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils[J]. J. Geotech Geoenviron. Eng., 2001, 127(10):817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)

    [5]

    Wang C Y. Liquefaction beyond the Near Field[J]. Seismol. Res. Lett., 2007, 78(5):512-517. doi: 10.1785/gssrl.78.5.512

    [6]

    Holzer T L, Jayko A S, Hauksson E, et al. Liquefaction caused by the 2009 Olancha, California (USA), M5.2 earthquake[J]. Engineering Geology, 2010, 116(1):184-188. https://www.researchgate.net/publication/223065568_Liquefaction_caused_by_the_2009_Olancha_California_USA_M52_earthquake

    [7]

    Iwasaki T. Soil liquefaction studies in Japan:state of the art[J]. Soil Dynamics and Earthquake Engineering, 1986, 5(1):2-68. doi: 10.1016/0267-7261(86)90024-2

    [8]

    尹荣一, 刘运明, 李有利, 等.唐山地区地震液化与地貌之间的关系[J].水土保持研究, 2005, 12(4):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y986918

    [9]

    Sims J D, Garvin C D. Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks:implications for paleoseismicity studies[J]. Bulletin of the Seismological Society of America, 1995, 85(1):51-65. https://www.researchgate.net/publication/279567188_Recurrent_liquefaction_induced_by_the_1989_Loma_Prieta_earthquake_and_1990_and_1991_aftershocks_implications_for_paleoseismicity_studies

    [10]

    Holzer T L, Bennett M J, Ponti D J, et al. Liquefaction and soil failure during 1994 Northridge earthquake[J]. J. Geotech. Geoenviron. Eng., 1999, 125(6):438-452. doi: 10.1061/(ASCE)1090-0241(1999)125:6(438)

    [11]

    Wang C Y, Dreger D S, Wang C H, et al. Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw=7.5) earthquake, Taiwan[J]. Geophysical Research Letters, 2003, 30(17):doi:10.1029/2003GL017601.

    [12]

    Wang C Y, Wang C H, Manga M. Coseismic release of water from mountains:Evidence from the 1999(Mw=7.5) Chi-Chi, Tai-wan, earthquake[J]. Geology, 2004, 32(9):769-772. doi: 10.1130/G20753.1

    [13]

    Cox S, Rutter H, Sims A, et al. Hydrological effects of the MW 7.1 Darfield (Canterbury) earthquake, 4 September 2010, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(3):231-247. doi: 10.1080/00288306.2012.680474

    [14]

    Quigley M C, Bastin S, Bradley B A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence[J]. Geology, 2013, 41(4):419-422. doi: 10.1130/G33944.1

    [15]

    Quigley M C, Hughes M W, Bradley B A, et al. The 2010-2011 Canterbury earthquake sequence:environmental effects, seismic triggering thresholds and geologic legacy[J]. Tectonophysics, 2016, 672:228-274. http://adsabs.harvard.edu/abs/2016Tectp.672..228Q

    [16]

    Housner G W. The mechanism of sandblows[J]. Bulletin of the Seismological Society of America, 1958, 48(2):155-161. https://www.researchgate.net/publication/285244357_The_mechanism_of_sandblows

    [17]

    Audemard F A, Gomez J C, Tavera H J, et al. Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, southern coastal Peru[J]. Engineering Geology, 2005, 78(3/4):237-255.

    [18]

    Dobry R. Some basic aspects of soil liquefaction during earthquakes[J]. Annals of the New York Academy of Sciences, 1989, 558:172-182. doi: 10.1111/nyas.1989.558.issue-1

    [19]

    Obermeier S F, Dickenson S E. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D[J]. Bulletin of the Seismological Society of America, 2000, 90(4):876-896. doi: 10.1785/0119980179

    [20]

    Idriss I M, Boulanger R W. Semi-empirical procedures for evaluating liquefaction potential during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2/4):115-130. https://www.deepdyve.com/lp/elsevier/semi-empirical-procedures-for-evaluating-liquefaction-potential-during-PJUIHBP7K4

    [21]

    Youd T L, Hoose S N. Liquefaction susceptibility and geologic setting[C]//the Proceedings of the 6th World Conference on Earthquake Engineering, F, 1977, Indian Society of Earthquake Technology Roorkee, India, 1977.

    [22]

    Cao Z Z, Youd T L, Yuan X M. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8):1132-1143. doi: 10.1016/j.soildyn.2011.04.001

    [23]

    Chen L W, Yuan X M, Cao Z Z, et al. Liquefaction macrophenomena in the great Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2):219-229. doi: 10.1007/s11803-009-9033-4

    [24]

    Hou L Q, Li A F, Qiu Z M. Characteristics of Gravelly Soil Liquefaction in Wenchuan Earthquake[J]. Applied Mechanics & Materials, 2011, 90/93:1498-1502.

    [25]

    Huang Y, Jiang X M. Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China[J]. Natural hazards, 2010, 54(3):839-850. doi: 10.1007/s11069-010-9509-6

    [26]

    曹振中, 袁晓铭, 陈龙伟, 等.汶川大地震液化宏观现象概述[J].岩土工程学报, 2010, 32(4):645-650. http://www.oalib.com/paper/4368664

    [27]

    袁晓铭, 曹振中, 孙锐, 等.汶川8.0级地震液化特征初步研究[J].岩石力学与工程学报, 2009, 28(6):1288-1296. http://www.cnki.com.cn/Article/CJFDTotal-ZZFY201601008.htm

    [28]

    Liu Z J, Zhang Z, Wen L, et al. Co-seismic ruptures of the 12 May 2008, M(s) 8.0 Wenchuan earthquake, Sichuan:East- west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet[J]. Earth Planet Sci Lett, 2009, 286(3/4):355-370.

    [29]

    USGS. USGS Peak Accel. Map (in%g): Wenchuan, China[EB/OL] (2017-03-13)[2017-04-12] https: //earthquake. usgs. gov/earthquakes/eventpage/usp000g650#shakemap.

    [30]

    曹振中, 袁晓铭.砾性土液化原理与判别技术——以汶川8.0级地震为例[M].北京:科学出版社, 2015.

    [31]

    Li Z G, Liu Z J, Jia D, et al. Quaternary activity of the range front thrust system in the Longmen Shan piedmont, China, revealed by seismic imaging and growth strata[J]. Tectonics, 2016, 35(12):2807-2827. doi: 10.1002/2015TC004093

    [32]

    Jia D, Wei G Q, Chen Z X, et al. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China:New insights fiom hydrocarbon exploration[J]. AAPG Bull., 2006, 90(9):1425-1447. doi: 10.1306/03230605076

    [33]

    Jia D, Li Y Q, Lin A M, et al. Structural model of 2008 Mw 7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China[J]. Tectonophysics, 2010, 491(1/4):174-184. https://www.researchgate.net/publication/223793722_Structural_Model_of_2008_Mw_79_Wenchuan_Earthquake_in_the_Rejuvenated_Longmen_Shan_Thrust_Belt_China

    [34]

    Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 2009, 458(7235):194-197. doi: 10.1038/nature07837

    [35]

    Hubbard J, Shaw J H, Klinger Y. Structural setting of the 2008 M(w)7.9 Wenchuan, China, earthquake[J]. Bulletin of the Seismological Society of America, 2010, 100(5B):2713-2735. doi: 10.1785/0120090341

    [36]

    Li Y Q, Jia D, Shaw J H, et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake:Three- dimensional modeling of the Longmen Shan fold-and-thrust belt[J]. J. Geophys Res-Solid Earth, 2010, 115, B04317, doi:10.1029/2009JB006824.

    [37]

    Ji C, Shao G, Lu Z, et al. Rupture history of 2008 May 12 Mw 8. 0 Wen-Chuan earthquake: evidence of slip interaction[C]//2008 Fall Meeting, AGU, Eos Trans, Suppl., 2008, 89(53): S23E-02.

    [38]

    Liu Z J, Sun J, Wang P, et al. Surface ruptures on the transverse Xiaoyudong fault:A signifi cant segment boundary breached during the 2008 Wenchuan earthquake, China[J]. Tectonophysics, 2012, 580:218-241. doi: 10.1016/j.tecto.2012.09.024

    [39]

    Shao G, Ji C, Lu Z, et al. Slip History of the 2008 Mw 7. 9 Wenchuan earthquake constrained by jointly inverting seismic and geodetic observations[J]. 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec. 2010, Abstract: S52B-04.

    [40]

    Zhang P Z, Wen X Z, Shen Z K, et al. Oblique, high-angle, listric- reverse faulting and associated development of strain:The Wenchnan earthquake of May 12, 2008, Sichuan, China[J]. Annual Review of Earth and Planetary Sciences, 2010, 38:353-382. doi: 10.1146/annurev-earth-040809-152602

    [41]

    Li X, Zhou Z, Yu H, et al. Strong motion observations and recordings from the great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(3):235-246. doi: 10.1007/s11803-008-0892-x

    [42]

    Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture history of the 2008 Mw 7.9 Wenchuan, China, earthquake:Evaluation of separate and joint inversions of geodetic, teleseismic, and strongmotion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1):353-370. doi: 10.1785/0120120108

    [43]

    杨晓平, 李安, 刘保金, 等.成都平原内汶川Ms8.0级地震的地表变形[J].地球物理学报, 2009, 52(10):2527-2537. doi: 10.3969/j.issn.0001-5733.2009.10.011

    [44]

    刘保金, 张先康, 鄂少英, 等.龙门山山前彭州隐伏断裂高分辨率地震反射剖面[J].地球物理学报, 2009, 52(2):538-546. http://manu39.magtech.com.cn/Geophy/CN/article/downloadArticleFile.do?attachType=PDF&id=933

    [45]

    de Michele M, Raucoules D, de Sigoyer J, et al. Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar:evidence for rupture on a blind thrust[J]. Geophys. J. Int., 2010, 183(3):1097-1103. http://www.academia.edu/8282443/Three-dimensional_surface_displacement_of_the_2008_May_12_Sichuan_earthquake_China_derived_from_Synthetic_Aperture_Radar_evidence_for_rupture_on_a_blind_thrust

    [46]

    Sirovich L. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations, 1996, 36(4):23-34. doi: 10.3208/sandf.36.4_23

    [47]

    Kokusho T, Tanaka Y, Kawai T, et al. Case study of rock debris avalanche gravel liquefied during 1993 Hokkaido-Nansei-Oki earthquake[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 1995, 35(3):83-95. https://www.researchgate.net/publication/270924202_Case_Study_of_Rock_Debris_Avalanche_Gravel_Liquefied_during_1993_Hokkaido-Nansei-Oki_Earthquake

    [48]

    Hatanaka M, Uchida A, Ohara J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-ken Nanbu earthquake[J]. Journal of the Japanese Geotechnical Society Soils & Foundation, 1997, 37(3):107-115. https://www.researchgate.net/publication/284272719_Liquefaction_Characteristics_of_a_Gravelly_Fill_Liquefied_during_the_1995_Hyogo-ken_Nanbu_Earthquake

    [49]

    Lin P S, Chang C W, Chang W J. Characterization of liquefaction resistance in gravelly soil:large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(9):675-687. https://www.deepdyve.com/lp/elsevier/characterization-of-liquefaction-resistance-in-gravelly-soil-large-T0yQ78j54n

    [50]

    Chester F M, Logan J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California[J]. Pure and Applied Geophysics, 1986, 124(1):79-106. https://link.springer.com/article/10.1007/BF00875720

    [51]

    Chester F M, Chester F M. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California[J]. Tectonophysics, 1998, 295(295):199-221. http://www.geo.tu-freiberg.de/tektono/downloadfiles/Chester%20and%20Chester%20ultracataclastite%20SA,%20Punchbowl%20Tectonophyiscs,%20295,%201998.pdf

    [52]

    Ben-Zion Y, Sammis C G. Characterization of Fault Zones[J]. Pure and Applied Geophysics, 2003, 160(3):677-715. doi: 10.1007/PL00012554

    [53]

    Donati S, Marra F, Rovelli A. Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes:The special effect of a fault zone[J]. Bulletin of the Seismological Society of America, 2001, 91(3):511-519. doi: 10.1785/0120000114

    [54]

    Marra F, Azzara R, Bellucci F, et al. Large amplification of ground motion at rock sites within a fault zone in Nocera Umbra (central Italy)[J]. J. Seismol., 2000, 4(4):543-554. doi: 10.1023/A:1026559901378

    [55]

    Rovelli A, Caserta A, Marra F, et al. Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, Central Italy[J]. Bulletin of the Seismological Society of America, 2002, 92(6):2217-2232. doi: 10.1785/0120010288

    [56]

    Spudich P, Olsen K B. Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California[J]. Geophysical Research Letters, 2001, 28(13):2533-2536. doi: 10.1029/2000GL011902

    [57]

    Li Y G, Leary P, Aki K, et al. Seismic trapped modes in the Oroville and San Andreas fault zones[J]. Science, 1990, 249(4970):763-766. doi: 10.1126/science.249.4970.763

    [58]

    Li Y G, Leary P C. Fault zone trapped seismic wave[J]. Bulletin of the Seismological Society of America, 1990, 80(5):1245-1271. http://ci.nii.ac.jp/naid/80005544850

    [59]

    Li Y G, Vidale J E, Cochran E S. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves[J]. Geophysical Research Letters, 2004, 31(12):doi:10.1029/2003GL019044.

  • 加载中

(7)

计量
  • 文章访问数:  616
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2017-11-02
修回日期:  2018-01-05
刊出日期:  2018-05-15

目录