青藏高原羌南-保山板块都古尔地区早白垩世变质辉长岩:对班公湖-怒江洋俯冲闭合的制约

刘一鸣, 李才, 李三忠, 解超明, 王明, 范建军, 刘金恒, 郭润华. 青藏高原羌南-保山板块都古尔地区早白垩世变质辉长岩:对班公湖-怒江洋俯冲闭合的制约[J]. 地质通报, 2018, 37(8): 1450-1463.
引用本文: 刘一鸣, 李才, 李三忠, 解超明, 王明, 范建军, 刘金恒, 郭润华. 青藏高原羌南-保山板块都古尔地区早白垩世变质辉长岩:对班公湖-怒江洋俯冲闭合的制约[J]. 地质通报, 2018, 37(8): 1450-1463.
LIU Yiming, LI Cai, LI Sanzhong, XIE Chaoming, WANG Ming, FAN Jianjun, LIU Jinheng, GUO Runhua. The Early Cretaceous Duguer metagabbro from Qiangnan-Baoshan block, Tibet Plateau: Implications for the subduction and closure of Bangong Co-Nujiang Ocean[J]. Geological Bulletin of China, 2018, 37(8): 1450-1463.
Citation: LIU Yiming, LI Cai, LI Sanzhong, XIE Chaoming, WANG Ming, FAN Jianjun, LIU Jinheng, GUO Runhua. The Early Cretaceous Duguer metagabbro from Qiangnan-Baoshan block, Tibet Plateau: Implications for the subduction and closure of Bangong Co-Nujiang Ocean[J]. Geological Bulletin of China, 2018, 37(8): 1450-1463.

青藏高原羌南-保山板块都古尔地区早白垩世变质辉长岩:对班公湖-怒江洋俯冲闭合的制约

  • 基金项目:
    博士后创新人才支持计划项目《藏北羌塘中部奥陶系海相地层的沉积环境及成因机制探讨》(编号:BX201700216)、中国博士后科学基金项目《青藏高原中部尼则地区晚白垩世构造岩浆事件》(编号:2017M622273)、国家重点研发计划项目《燕山期多板块汇聚与陆缘构造过程》(编号:2017YFC0601401)、国家自然科学基金项目《青藏高原八宿地区寒武纪片麻状花岗岩:对冈瓦纳大陆北缘早古生代构造演化的制约》(批准号:41802232)、《青藏高原羌塘南部埃迪卡拉纪地层研究》(批准号:41602230)《班公湖-怒江洋早白垩世演化:来自复理石沉积的制约》(批准号:41702227)和中国地质调查局项目《冈底斯-喜马拉雅铜矿资源基地调查》(编号:DD20160015)、《班公湖-怒江成矿带铜多金属矿资源基地调查》(编号:DD20160026)
详细信息
    作者简介: 刘一鸣(1989-), 男, 博士后, 海洋地质专业。E-mail:michael_yatmingliu@foxmail.com
    通讯作者: 李才(1953-), 男, 教授, 博士生导师, 从事青藏高原大地构造与区域地质研究。E-mail:licai010@126.com
  • 中图分类号: P534.53;P588.12+4

The Early Cretaceous Duguer metagabbro from Qiangnan-Baoshan block, Tibet Plateau: Implications for the subduction and closure of Bangong Co-Nujiang Ocean

More Information
  • 班公湖-怒江洋的俯冲闭合过程对于青藏高原早期形成与演化研究具有重要的意义。在羌南-保山板块腹地都古尔地区识别出早白垩世变质辉长岩。对其进行了详细的岩石学、年代学和全岩地球化学研究。锆石U-Pb测年结果显示,该辉长岩形成年龄为110.4±1.4Ma。全岩地球化学特征显示,该辉长岩具有碱性玄武岩的特征,富集轻稀土元素,轻、重稀土元素分馏较强,无明显的Eu异常;富集Rb、Pb、Nd和Ti,亏损Ba、K、Sr和Y,具有洋岛型玄武岩的亲缘性。该辉长岩为尖晶石-石榴子石二辉橄榄岩经低程度部分熔融的产物,源区存在少量的石榴子石残留。岩浆在上升过程中经历了少量下地壳物质的混染和以斜方辉石为主的分离结晶作用。在综合区域最新研究成果的基础上,认为该辉长岩形成于板内环境,为班公湖-怒江洋闭合后洋脊俯冲的产物。

  • 加载中
  • 图 1  羌塘中部都古尔地区地质简图(据参考文献[35]修改)

    Figure 1. 

    图 2  都古尔地区早白垩世晚期变质辉长岩野外露头及镜下照片

    Figure 2. 

    图 3  都古尔变质辉长岩典型锆石阴极发光(CL)图像、分析点位和锆石U-Pb年龄加权平均值

    Figure 3. 

    图 4  都古尔早白垩世晚期变质辉长岩Nb/Y-Zr/TiO2[42](a)和Co-Th图解[43](b)

    Figure 4. 

    图 5  都古尔早白垩世晚期变质辉长岩球粒陨石标准化稀土元素配分曲线和原始地幔标准化微量元素蛛网图(标准值据参考文献[41])

    Figure 5. 

    图 6  都古尔早白垩世晚期变质辉长岩Zr与主量、微量元素关系图(R为相关系数)

    Figure 6. 

    图 7  都古尔早白垩世晚期变质辉长岩Harker图解

    Figure 7. 

    图 8  都古尔早白垩世晚期变质辉长岩Cr-Ni[45](a), (Th/Ta)PM-(La/Nb)PM[12, 52](b), Nb/Yb-Th/Yb[56](c), Sm-Sm/Yb[57](d), (La/Sm)PM-(Er/Yb)PM[58](e)和Zr-Zr/Y图解[59](f)

    Figure 8. 

    图 9  羌南-保山板块早白垩世晚期构造演化模型图

    Figure 9. 

    表 1  都古尔变质辉长岩LA-ICP-MS锆石U-Th-Pb同位素测定结果

    Table 1.  U-Th-Pb isotope compositions of zircons in Duguer metagabbro as measured by LA-ICP-MS

    测点 Th/10-6 U/10-6 同位素比值 年龄/Ma
    207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    T2-01 162.85 956.73 0.0687 0.0013 1.5181 0.0285 0.1604 0.0021 888 19 938 11 959 12
    T2-02 100.72 703.36 0.0665 0.0148 1.0613 0.2341 0.1158 0.0032 822 481 734 115 706 19
    T2-03 586.91 699.03 0.0653 0.0013 0.8367 0.0170 0.0929 0.0012 783 22 617 9 573 7
    T2-04 90.71 336.69 0.0581 0.0012 0.6570 0.0134 0.0819 0.0011 535 23 513 8 508 6
    T2-05 35.1 460.17 0.0671 0.0013 1.3275 0.0262 0.1435 0.0019 841 21 858 11 864 11
    T2-06 70.41 410.91 0.0736 0.0015 1.4856 0.0293 0.1463 0.0019 1031 20 925 12 880 11
    T2-07 70.09 557.02 0.0587 0.0012 0.7409 0.0153 0.0916 0.0012 555 23 563 9 565 7
    T2-08 258.49 163.74 0.0601 0.0020 0.1425 0.0047 0.0172 0.0003 606 45 135 4 110 2
    T2-09 169.85 190.87 0.0497 0.0018 0.1957 0.0069 0.0286 0.0004 180 56 181 6 182 2
    T2-10 53.84 194.34 0.0582 0.0012 0.3274 0.0063 0.0408 0.0005 538 22 288 5 258 3
    T2-11 1791.9 1280.2 0.0960 0.0043 0.2324 0.0100 0.0176 0.0003 1547 87 212 8 112 2
    T2-12 122.08 333.35 0.0681 0.0017 1.2711 0.0269 0.1353 0.0016 873 51 833 12 818 9
    T2-13 64.3 89.92 0.0500 0.0025 0.1963 0.0096 0.0285 0.0005 193 85 182 8 181 3
    T2-14 246.44 154.47 0.0482 0.0025 0.1131 0.0058 0.0170 0.0003 109 86 109 5 109 2
    T2-15 288.78 615.84 0.0641 0.0009 0.8037 0.0103 0.0909 0.0011 746 12 599 6 561 6
    T2-16 498.26 315.57 0.0482 0.0013 0.1153 0.0031 0.0173 0.0002 111 39 111 3 111 1
    T2-17 2831.44 757.79 0.0502 0.0065 0.1987 0.0254 0.0287 0.0005 203 275 184 22 183 3
    T2-18 468.76 1148.32 0.0560 0.0023 0.2364 0.0090 0.0306 0.0004 452 92 215 7 194 3
    T2-19 20.84 425.07 0.0742 0.0011 1.6185 0.0221 0.1583 0.0019 1046 12 977 9 947 11
    T2-20 52.16 423.82 0.0568 0.0013 0.5653 0.0106 0.0722 0.0009 484 50 455 7 449 5
    T2-21 63.88 96 0.0461 0.0150 0.1049 0.0340 0.0165 0.0004 525 101 31 106 3
    T2-22 2562.66 1777.12 0.0529 0.0009 0.2116 0.0033 0.0290 0.0004 323 16 195 3 184 2
    T2-23 464.4 389.57 0.0562 0.0010 0.5606 0.0093 0.0724 0.0009 459 17 452 6 451 5
    T2-24 180.12 457.08 0.0542 0.0011 0.2696 0.0053 0.0361 0.0005 380 22 242 4 228 3
    T2-25 1058.51 627.74 0.0489 0.0017 0.1422 0.0048 0.0211 0.0003 144 54 135 4 135 2
    下载: 导出CSV

    表 2  都古尔变质辉长岩全岩主量和微量元素测定结果

    Table 2.  Whole-rock major and trace element compositions of Duguer metagabbro

    样品 T2H1 T2H2 T2H3 T2H4 T2H5 T2H6 T2H7 T2H8
    SiO2 50.37 50.19 51.17 51.77 50.40 49.96 50.94 49.80
    TiO2 4.51 4.54 4.49 4.49 4.50 4.56 4.56 4.63
    Al2O3 14.21 13.79 14.05 13.82 14.04 13.84 14.18 14.30
    TFe2O3 13.61 13.97 13.64 13.20 13.71 14.06 13.99 14.14
    MnO 0.23 0.20 0.20 0.21 0.21 0.20 0.21 0.19
    MgO 5.58 5.65 5.45 5.35 5.70 5.87 5.73 5.89
    CaO 8.06 8.23 8.33 7.87 8.07 8.93 7.46 9.08
    Na2O 0.56 0.62 0.71 0.61 0.57 0.66 0.57 0.74
    K2O 1.61 1.94 1.12 1.42 1.67 1.32 1.46 0.94
    P2O5 0.54 0.52 0.58 0.51 0.54 0.50 0.56 0.57
    烧失量 1.33 0.99 0.82 1.25 1.20 0.77 0.93 0.41
    总计 100.60 100.63 100.55 100.49 100.61 100.67 100.57 100.69
    Li 57.54 36.67 36.12 48.66 51.64 36.36 43.88 25.43
    P 3031.60 3025.10 3174.40 2967.90 3126.50 2810.60 3231.80 3045.90
    K 15483.00 18213.00 10083.30 12911.60 16003.00 12292.80 14105.00 8427.90
    Sc 29.46 28.46 27.34 28.08 29.09 28.85 30.00 27.63
    V 389.74 382.46 370.96 371.93 387.40 379.08 399.62 372.84
    Co 58.61 50.50 53.21 50.45 54.27 57.44 57.02 54.51
    Cu 14.19 38.45 24.58 12.22 21.20 12.48 16.88 13.71
    Zn 152.38 145.52 164.75 150.75 143.54 143.94 151.82 141.14
    Ga 31.62 31.41 30.25 29.95 30.99 30.30 32.40 29.63
    Pb 19.66 15.74 20.98 21.22 19.68 15.02 16.91 18.58
    Cr 53.63 51.55 38.64 51.82 58.15 58.44 62.65 59.36
    Ni 51.14 42.61 39.70 45.76 54.05 56.88 55.94 52.34
    Rb 101.14 141.68 67.09 88.90 104.74 71.50 97.84 49.84
    Ba 351.60 340.40 275.19 316.40 378.20 290.80 259.00 222.20
    Th 5.15 4.97 5.35 4.99 4.75 4.82 4.89 4.75
    U 1.15 1.06 1.12 1.10 1.03 0.95 1.03 0.99
    Nb 38.32 36.58 38.63 37.53 37.82 34.76 38.18 36.47
    Cs 1.22 2.20 1.92 1.23 1.79 1.48 1.87 1.20
    Ta 2.67 2.22 2.78 2.59 2.22 2.11 2.26 2.20
    La 45.65 43.51 45.23 43.62 43.26 39.17 43.85 42.23
    Ce 96.54 92.21 95.82 93.93 92.30 85.13 92.32 90.17
    Pr 13.16 12.64 13.22 12.63 12.52 11.28 12.72 12.20
    Sr 389.40 346.90 430.20 422.70 416.50 397.90 403.20 466.60
    Nd 54.56 52.65 55.17 52.46 52.04 47.08 52.92 50.65
    Zr 347.36 344.32 350.28 340.80 341.12 302.56 343.84 330.88
    Hf 8.31 8.09 8.49 8.03 8.19 7.46 8.40 8.13
    Sm 12.15 11.80 12.34 11.72 11.63 10.60 11.85 11.34
    Eu 3.74 3.85 3.68 3.51 3.53 3.38 3.57 3.48
    Gd 12.07 11.75 12.21 11.54 11.49 10.57 11.78 11.17
    Tb 1.67 1.65 1.70 1.62 1.59 1.48 1.66 1.57
    Dy 9.35 9.11 9.42 8.97 8.86 8.24 9.24 8.66
    Y 40.10 38.82 39.76 38.30 38.94 36.08 40.58 37.71
    Ho 1.73 1.70 1.76 1.67 1.65 1.55 1.75 1.62
    Er 4.39 4.29 4.46 4.19 4.18 3.92 4.39 4.09
    Tm 0.55 0.54 0.56 0.53 0.52 0.49 0.56 0.51
    Yb 3.39 3.29 3.43 3.24 3.18 3.00 3.34 3.17
    Lu 0.45 0.43 0.45 0.43 0.42 0.40 0.44 0.42
    下载: 导出CSV
  • [1]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211

    [2]

    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4):1029. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2001TC001332/

    [3]

    Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8):865-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026958478

    [4]

    Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8):917-933. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025104850

    [5]

    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018

    [6]

    余光明, 王成善.西藏特提斯沉积地质[M].北京:地质出版社, 1990.

    [7]

    王建平, 刘彦明, 李秋生, 等.西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报, 2002, 21(7):405-410. doi: 10.3969/j.issn.1671-2552.2002.07.007 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=200207103&flag=1

    [8]

    陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报, 2004, 23(2):193-194. doi: 10.3969/j.issn.1671-2552.2004.02.015 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20040232&flag=1

    [9]

    潘桂棠, 丁俊, 姚冬生, 等.青藏高原及邻区地质图(1:1500000)说明书[M].成都:成都地图出版社, 2004:1-148.

    [10]

    Baxter A T, Aitchison J C, Zyabrev S V. Radiolarian age constraints on Mesotethyan ocean evolution, and their implications for development of the Bangong-Nujiang suture, Tibet[J]. Journal of the Geological Society, 2009, 166(4):689-694. doi: 10.1144/0016-76492008-128

    [11]

    Liu W L, Xia B, Zhong Y, et al. Age and composition of the Rebang Co and Julu ophiolites, central Tibet:implications for the evolution of the Bangong Meso-Tethys[J]. International Geology Review, 2014, 56(4):430-447. doi: 10.1080/00206814.2013.873356

    [12]

    朱弟成, 潘桂棠, 莫宣学, 等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 2006, 80(9):1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008

    [13]

    Fan J J, Li C, Xie C M, et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys[J]. International Geology Review, 2014, 56(12):1504-1520. doi: 10.1080/00206814.2014.947639

    [14]

    Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the BanggongNujiang Ocean[J]. Lithos, 2015, 227:148-160. doi: 10.1016/j.lithos.2015.03.021

    [15]

    Fan J J, Li C, Liu Y M, et al. Age and nature of the late Early Cretaceous Zhaga Formation, northern Tibet:constraints on when the Bangong-Nujiang Neo-Tethys Ocean closed[J]. International Geology Review, 2015, 57(3):342-353. doi: 10.1080/00206814.2015.1006695

    [16]

    Li G M, Qin K Z, Li J X, et al. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet:Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions[J]. Gondwana Research, 2017, 41:110-127. doi: 10.1016/j.gr.2015.09.006

    [17]

    Xu W, Li C, Wang M, et al. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean:evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet[J]. Gondwana Research, 2017, 41:128-141. doi: 10.1016/j.gr.2015.09.010

    [18]

    王忠恒, 王永胜, 谢元和, 等.西藏班公湖-怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J].沉积与特提斯地质, 2005, 25(1/2):155-162. http://d.old.wanfangdata.com.cn/Periodical/yxgdl200501029

    [19]

    鲍佩声, 肖序常, 苏犁, 等.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J].中国科学(D辑), 2007, 37(3):298-307. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200703002

    [20]

    Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19(3):361-378. doi: 10.1111/bre.2007.19.issue-3

    [21]

    Li Y L, He J, Wang C S, et al. Late Cretaceous K-rich magmatism in central Tibet:Evidence for early elevation of the Tibetan plateau?[J]. Lithos, 2013, 160:1-13. http://cn.bing.com/academic/profile?id=8b06401cca2d207b902721cfae846215&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2):449-463. doi: 10.1016/j.gr.2013.06.005

    [23]

    Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3):298-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211291457

    [24]

    Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1):241-255. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.epsl.2010.11.005/

    [25]

    Li J X, Qin K Z, Li G M, et al. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet:Evidence from U-Pb geochronology, petrochemistry and Sr-NdHf-O isotope characteristics[J]. Lithos, 2013, 160:216-227. http://www.sciencedirect.com/science/article/pii/S0024493712005063

    [26]

    Li J X, Qin K Z, Li G M, et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:petrogenetic and tectonic implications[J]. Lithos, 2014, 198:77-91. http://cn.bing.com/academic/profile?id=3ad38b6ee148241d58e0fdd98aabbef3&encoded=0&v=paper_preview&mkt=zh-cn

    [27]

    Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean:insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245:18-33. doi: 10.1016/j.lithos.2015.07.016

    [28]

    Hao L L, Wang Q, Wyman D A, et al. Underplating of basaltic magmas and crustal growth in a continental arc:Evidence from Late Mesozoic intermediate-felsic intrusive rocks in southern Qiangtang, central Tibet[J]. Lithos, 2016, 245:223-242. doi: 10.1016/j.lithos.2015.09.015

    [29]

    Hao L L, Wang Q, Wyman D A, et al. Andesitic crustal growth via mélange partial melting:Evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(5):1641-1659. doi: 10.1002/2016GC006248

    [30]

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245:7-17. doi: 10.1016/j.lithos.2015.06.023

    [31]

    Li S M, Zhu D C, Wang Q, et al. Northward subduction of Bangong-Nujiang Tethys:insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet[J]. Lithos, 2014, 205:284-297. doi: 10.1016/j.lithos.2014.07.010

    [32]

    Liu D L, Shi R D, Ding L, et al. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet:Implications for the subduction of the Bangong-Nujiang Tethyan Ocean[J]. Gondwana Research, 2017, 41:157-172. doi: 10.1016/j.gr.2015.04.007

    [33]

    Liu Y M, Li C, Xie C M, et al. Detrital zircon U-Pb ages and Hf isotopic composition of the Ordovician Duguer quartz schist, central Tibetan Plateau:constraints on tectonic affinity and sedimentary source regions[J]. Geological Magazine, 2017, 154(3):558-570. doi: 10.1017/S0016756816000212

    [34]

    Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet:Lateral variations and implications for crustal structure[J]. Geological Society of America Bulletin, 2011, 123(3/4):585-600. http://cn.bing.com/academic/profile?id=0740c5429d462d9c8fbddc39f9aa9eb5&encoded=0&v=paper_preview&mkt=zh-cn

    [35]

    Liu Y M, Li C, Xie C M, et al. Geochronology of the Duguer range metamorphic rocks, Central Tibet:implications for the changing tectonic setting of the South Qiangtang subterrane[J]. International Geology Review, 2017, 59(1):29-44. doi: 10.1080/00206814.2016.1199977

    [36]

    Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1

    [37]

    Ludwig K J. User's manual for Isoplot 3. 00:A geochronological toolkit for Microsoft Excel[J]. Berkeley, CA, Berkeley Geochronology Center Special Publication, 2003, 4:1-70. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.immuni.2011.10.010/

    [38]

    Govindaraju K. Compilation of working values and sample description for 383 geostandards[J]. Geostandards and Geoanalytical Research, 1994, 18:1-158. doi: 10.1046/j.1365-2494.1998.53202081.x-i1

    [39]

    于红.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D].中国地质大学(北京)硕士学位论文, 2011.http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078082.htm

    [40]

    Weaver B L. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 1991, 104(2/4):381-397. http://cn.bing.com/academic/profile?id=08d07793c21f2cde10f3e0ff0aa49b1b&encoded=0&v=paper_preview&mkt=zh-cn

    [41]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [42]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    [43]

    Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements:Development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007, 48:2341-2357. doi: 10.1093/petrology/egm062

    [44]

    Rudnick R L, McLennan S M, Taylor S R. Large ion lithophile elements in rocks from high-pressure granulite facies terrains[J]. Geochimica et Cosmochimica Acta, 1985, 49(7):1645-1655. doi: 10.1016/0016-7037(85)90268-6

    [45]

    Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. Longman Scientific & Technical, London, 1993:1-352.

    [46]

    Kerrich R, Polat A, Wyman D, et al. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province:implications for Archean mantle reservoirs and greenstone belt genesis[J]. Lithos, 1999, 46(1):163-187. doi: 10.1016/S0024-4937(98)00059-0

    [47]

    Polat A, Hofmann A W. Alteration and geochemical patterns in the 3.7-3.8 Ga Isua greenstone belt, West Greenland[J]. Precambrian Research, 2003, 126(3):197-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ028302088

    [48]

    Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph Series, 1992, 71: 67-102.http://onlinelibrary.wiley.com/doi/10.1029/GM071p0067/summary

    [49]

    Rudnick R L, Fountain D M. Nature and composition of the continental crust:a lower crustal perspective[J]. Reviews of geophysics, 1995, 33(3):267-309. doi: 10.1029/95RG01302

    [50]

    Rudnick R L, Gao S. The composition of the continental crust[C]//Rudnick R L, Holland H D, Turekian K K. The Crust Treatise on Geochemistry. Elsevier, Oxford, 2003, 3: 1-64.http://www.sciencedirect.com/science/article/pii/0016703795000382

    [51]

    Lassiter J C, DePaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints[C]//Large igneous provinces: Continental, oceanic, and planetary flood volcanism, 1997: 335-355.

    [52]

    Neal C R, Mahoney J J, Chazey W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:results from ODP Leg 183[J]. Journal of Petrology, 2002, 43(7):1177-1205. doi: 10.1093/petrology/43.7.1177

    [53]

    Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3):197-213. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0009-2541(99)00173-4/

    [54]

    Perfit M R, Gust D A, Bence A E, et al. Chemical characteristics of island-arc basalts:implications for mantle sources[J]. Chemical Geology, 1980, 30(3):227-256. doi: 10.1016/0009-2541(80)90107-2

    [55]

    Humphreys E R, Niu Y. On the composition of ocean island basalts (OIB):The effects of lithospheric thickness variation and mantle metasomatism[J]. Lithos, 2009, 112(1):118-136. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.lithos.2009.04.038/

    [56]

    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23:251-285. doi: 10.1146/annurev.ea.23.050195.001343

    [57]

    Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China):Implications for subduction related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152:27-47. doi: 10.1016/j.precamres.2006.09.002

    [58]

    Fram M S, Lesher C E. Geochemical constraints on mantle melting during creation of the North Atlantic basin[J]. Nature, 1993, 363:712-715. doi: 10.1038/363712a0

    [59]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic-rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69:33-47. doi: 10.1007/BF00375192

    [60]

    Hickey R L, Frey F A, Gerlach D C, et al. Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34-41S):trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B6):5963-5983. doi: 10.1029/JB091iB06p05963

    [61]

    Raterman N S, Robinson A C, Cowgill E S. Structure and detrital zircon geochronology of the Domar fold-thrust belt:Evidence of pre-Cenozoic crustal thickening of the western Tibetan Plateau[J]. Geological Society of America Special Papers, 2014, 507:89-104. doi: 10.1130/2014.2507(05)

    [62]

    Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8):719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2

    [63]

    范建军.班公湖-怒江洋中西段晚中生代汇聚消亡时空重建[D].吉林大学博士学位论文, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10183-1016084526.htm

    [64]

    李才, 翟庆国, 陈文.青藏高原龙木错-双湖板块缝合带闭合的沉积学证据-来自果干加年山蛇绿岩与流纹岩Ar-Ar和SHRIMP年龄制约[J].岩石学报, 2007, 23(5):911-918. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200705006&dbname=CJFD&dbcode=CJFQ

    [65]

    Liu Y M, Wang M, Li C, et al. Cretaceous structures in the Duolong region of central Tibet:Evidence for an accretionary wedge and closure of the Bangong-Nujiang Neo-Tethys Ocean[J]. Gondwana Research, 2017, 48:110-123. doi: 10.1016/j.gr.2017.04.026

    [66]

    Liu Y M, Wang M, Li C, et al. Late Cretaceous tectono-magmatic activity in the Nize region, central Tibet:evidence for lithospheric delamination beneath the Qiangtang-Lhasa collision zone[J]. International Geology Review, 2018, DOI:10.1080/00206814.2018. 1437789.

    [67]

    Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos, 2013, 168:144-159. http://www.sciencedirect.com/science/article/pii/S0024493713000273

    [68]

    吴浩, 李才, 胡培远, 等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014, 33(11):1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20141116&flag=1

    [69]

    Chen W W, Zhang S H, Ding J K, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41:373-389. doi: 10.1016/j.gr.2015.07.004

    [70]

    汪明洲, 董得源.藏东东巧组层孔虫[J].古生物学报, 1984, 23(3):343-352.

    [71]

    Yin J, Xu J, Liu C, et al. The Tibetan Plateau:regional stratigraphic context and previous work[J]. Royal Society of London Philosophical Transactions, 1988, 327(1594):5-52. doi: 10.1098/rsta.1988.0121

    [72]

    王立全, 潘桂棠, 丁俊, 等.青藏高原及邻区地质图及说明书(1:1500000)[M].北京:地质出版社, 2013.

    [73]

    Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146:264-275. http://cn.bing.com/academic/profile?id=33daeff3dc985f83678e17871eb253ea&encoded=0&v=paper_preview&mkt=zh-cn

    [74]

    高山, 金振民.拆沉作用及其壳-幔演化动力学意义[J].地质科技情报, 1997, 16(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700065616

    [75]

    Von Blanckenburg F, Davies J H. Slab breakoff:a model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14(1):120-131. doi: 10.1029/94TC02051

    [76]

    Liu S, Hu R, Gao S, et al. U-Pb zircon age, geochemical and SrNd isotopic data as constraints on the petrogenesis and emplacement time of andesites from Gerze, southern Qiangtang Block, northern Tibet[J]. Journal of Asian Earth Sciences, 2012, 45:150-161. doi: 10.1016/j.jseaes.2011.09.025

    [77]

    Fan J J, Li C, Sun Z M, et al. Early Cretaceous MORB-type basalt and A-type rhyolite in northern Tibet:Evidence for ridge subduction in the Bangong-Nujiang Tethyan Ocean[J]. Journal of Asian Earth Sciences, 2018, 154:187-201. doi: 10.1016/j.jseaes.2017.12.020

  • 加载中

(9)

(2)

计量
  • 文章访问数:  786
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2018-01-10
修回日期:  2018-03-13
刊出日期:  2018-08-15

目录