Determination of the Nanhua System volcanic rocks in Anyi on the western margin of the Yangtze Block
-
摘要:
扬子陆块西缘安益大湾山地区出露一套由变质玄武岩等组成的变质基性火山岩,前人将其归为中元古界,并作为寻找磁铁矿的主要对象。调查发现,安益大湾山变质基性火山岩与下伏浅变质岩系间发育一套稳定沉积的砾岩。应用LA-ICP-MS技术对其底砾岩之上最底部的变质玄武岩进行了锆石U-Pb年龄测定,获得了781.3±1.9Ma的岩浆锆石206Pb/238U年龄加权平均值和1008±14Ma、1142±15Ma、2714±10Ma的继承性岩浆锆石207Pb/206Pb年龄,指示该套变质基性火山岩形成于南华纪,并将其从浅变质岩系中解离出来,对比为澄江组。继承性锆石年龄数据指示,扬子地块西缘安益地区存在新太古界和中元古界物质记录。结合前人研究成果和近来获得的年龄数据,将滇中澄江组的时代界定于820~740Ma,并将南华系的底界界定于820Ma。大湾山中-大型磁铁矿产于扬子地块西缘澄江组的变质基性火山岩中,其主成矿期为南华纪,可能属于热液氧化物-铜-金矿床。
Abstract:Metamorphic basic volcanic rocks composed of metamorphic basalts and some other rocks are exposed in the Dawanshan area of Anyi on the western margin of the Yangtze Block. Due to the lack of geochronologic data, previous researchers classified these rocks as belonging to the Middle Proterozoic and considered them as the main target for magnetite prospecting. The authors found that a stable sedimentary conglomerate is developed between the metamorphic basic volcanic rocks and the underlying metamorphic rocks in the Dawanshan area of Anyi. LA-ICP-MS tech was applied to measuring the U-Pb age of zircons from metamorphic basalt above most conglomerates. The 206Pb/238U weighted average values of 781.3±1.9Ma, and 1008±14Ma, 1142±15Ma, 2714±10Ma for 207Pb/206Pb ages of inherited magma zircon were obtained, suggesting that the metamorphic basic volcanic rocks were formed in Nanhua epoch. The authors separated them from the shallow metamorphic rock series and assigned them to Chengjiang Formation through correlation. The ages of the inherited zircons and the geological characteristics of this region suggest that the Neoarchean and Mesoproterozoic material records exist in the Anyi area on the western margin of the Yangtze Block. Based on previous research results and the age of tuff obtained from Chengjiang Formation by the authors, the temporal boundary of Chengjiang Formation in central Yunnan was defined at 820~740Ma, and the age of the bottom of Nanhua System was defined at 820Ma. Dawanshan middlelarge magnetite was produced in the metamorphic basic volcanic rocks of Chengjiang Formation on the western margin of the Yangtze Block. The main ore-forming activity occurred in the Nanhua period and may belong to the IOCG deposit.
-
-
表 1 滇中澄江组火山岩锆石U-Pb年龄
Table 1. Zircon U-Pb ages of the volcanic rocks from Chengjiang Formation in central Yunnan Province
测点编号 含量/10-6 同位素比值 年龄/Ma Pb U 232Th/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 误差% 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D1202-1-1(灰绿色变质玄武岩) 1 38 240 1.3421 0.0022 0.0651 0.0006 1.1577 0.0115 0.1290 0.0007 0.62 777 18 781 8 782 4 2 39 238 1.6220 0.0047 0.0653 0.0006 1.1584 0.0107 0.1287 0.0006 0.18 784 19 781 7 780 4 3 53 303 1.9180 0.0094 0.0653 0.0005 1.1571 0.0089 0.1288 0.0007 0.49 780 15 781 6 781 4 4 29 184 1.3854 0.0314 0.0653 0.0006 1.1579 0.0107 0.1285 0.0007 1.72 785 18 781 7 780 5 5 21 148 0.9615 0.0103 0.0655 0.0008 1.1627 0.0137 0.1287 0.0006 0.46 791 24 783 9 780 4 6 33 243 0.6449 0.0047 0.0654 0.0005 1.1594 0.0091 0.1286 0.0007 0.22 786 16 782 6 780 4 7 46 292 1.5923 0.0078 0.0655 0.0005 1.1602 0.0100 0.1284 0.0007 0.16 791 17 782 7 779 4 8 27 182 1.2220 0.0020 0.0656 0.0006 1.1608 0.0130 0.1284 0.0007 0.40 792 20 782 9 779 4 9 31 205 1.4871 0.0110 0.0651 0.0006 1.1555 0.0118 0.1287 0.0008 0.27 778 20 780 8 780 5 10 25 359 1.1981 0.0108 0.0318 0.0005 0.2888 0.0041 0.0659 0.0003 0.25 -984 42 258 4 411 2 11 36 223 1.6439 0.0026 0.0651 0.0006 1.1542 0.0110 0.1287 0.0007 0.32 776 20 779 7 780 4 12 53 286 2.6224 0.0892 0.0654 0.0012 1.1622 0.0215 0.1288 0.0008 1.64 788 39 783 14 781 5 13 18 218 0.8920 0.0113 0.0597 0.0008 0.5894 0.0083 0.0717 0.0004 0.63 591 30 470 7 446 2 14 21 132 1.2718 0.0037 0.0653 0.0009 1.1632 0.0164 0.1291 0.0007 0.34 785 29 783 11 783 4 15 278 485 0.4994 0.0008 0.1868 0.0012 13.4295 0.0862 0.5314 0.0025 0.15 2714 10 2710 17 2705 13 16 47 337 1.0279 0.0026 0.0653 0.0005 1.1638 0.0102 0.1293 0.0008 0.25 784 16 784 7 784 5 17 32 219 1.1154 0.0033 0.0649 0.0006 1.1573 0.0113 0.1293 0.0006 0.38 772 20 781 8 784 4 18 70 453 1.4441 0.0094 0.0649 0.0006 1.1557 0.0111 0.1291 0.0007 0.18 772 19 780 7 783 4 19 35 226 1.3293 0.0066 0.0649 0.0009 1.1685 0.0207 0.1305 0.0011 1.22 773 28 786 14 791 6 20 84 556 1.3580 0.0139 0.0653 0.0004 1.1604 0.0090 0.1290 0.0007 0.20 783 14 782 6 782 4 21 49 329 1.1598 0.0091 0.0657 0.0005 1.1665 0.0096 0.1288 0.0007 0.38 796 16 785 6 781 4 22 58 389 1.1884 0.0022 0.0653 0.0005 1.1596 0.0088 0.1287 0.0007 0.19 785 15 782 6 781 4 23 61 334 0.6855 0.0035 0.0728 0.0005 1.6283 0.0116 0.1622 0.0008 0.24 1008 14 981 7 969 5 24 35 197 0.4253 0.0004 0.0778 0.0006 1.8163 0.0150 0.1693 0.0010 0.48 1142 15 1051 9 1008 6 25 72 471 1.2648 0.0028 0.0653 0.0004 1.1594 0.0083 0.1288 0.0006 0.17 784 14 782 6 781 4 表 2 滇中澄江组火山岩锆石U-Pb年龄
Table 2. Zircon U-Pb ages of the volcanic rocks from Chengjiang Formation in central Yunnan Province
采样位置 层位 岩性 定年方法 年龄/Ma 数据来源 牟定安益 澄江组/路古模岩组界面上2m,顶界以下厚度不清 玄武岩 LA-ICP-MS锆石U-Pb 781.3±1.9 本文 武定罗茨 未见底,南沱组/澄江组界面之下玄武岩底界 玄武岩 LA-ICP-MS锆石U-Pb 804±6 文献[45] 巧家新店乡谓姑村 澄江组/黄草岭组界面上462m,灯影组/澄江组界面之下173.5m 凝灰岩 LA-ICP-MS锆石U-Pb 785±12
828±8.3文献[17] 滇中澄江 底界之上厚度不清,南沱组/澄江组界面之下20m 凝灰岩 LA-ICP-MS锆石U-Pb 819±14
781±11
725±11文献[16] 东川中河 底界之上厚度不清,陡山沱组/澄江组界面之下1132m 凝灰岩 LA-ICP-MS锆石U-Pb 803.1±8.7 文献[15] 东川金阳松林坪 澄江组/黄草岭组界面上189m,南沱组/澄江组界面之下296m 凝灰岩 LA-ICP-MS锆石U-Pb 797.8±8.2 文献[15] 武定罗茨 未见底,南沱组/澄江组界面之下玄武岩底界 玄武岩 全岩Rb-Sr 887 文献[51] 武定罗茨 未见底,南沱组/澄江组界面之下玄武岩底界 玄武岩 全岩Rb-Sr 885 文献[13] 玉溪易门六街 澄江组/黑山组界面上30m,顶界以下厚度不清 凝灰岩 LA-ICP-MS锆石U-Pb 812.1±5.5 未发表数据 -
[1] Li Z X. South China in Rodinia:Part of the missing link between Australia-East Antarctica and Laurentia[J]. Geology, 1995, 23(5):407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
[2] Li Z X, Zhang L, Powell C M. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia[J]. Journal of the Geological Society of Australia, 1996, 43(6):593-604. http://www.tandfonline.com/doi/abs/10.1080/08120099608728281
[3] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth & Planetary Science Letters, 1999, 173(3):171-181. http://www.sciencedirect.com/science/article/pii/S0012821X9900240X
[4] 四川省地质矿产局.四川省岩石地层[M].武汉:中国地质大学出版社, 1997:1-417.
[5] 李献华, 周汉文, 李正祥, 等.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征[J].地球化学, 2001, 30(4):315-322. doi: 10.3321/j.issn:0379-1726.2001.04.003
[6] 李献华, 祁昌实, 刘颖, 等.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约[J].科学通报, 2005, 50(19):2155-2160. doi: 10.3321/j.issn:0023-074X.2005.19.015
[7] 卓皆文, 江新胜, 王剑, 等.川西新元古代苏雄组层型剖面底部豆状熔结凝灰岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].沉积与特提斯地质, 2015, 35(4):85-91. doi: 10.3969/j.issn.1009-3850.2015.04.013
[8] 赖绍聪, 秦江锋, 朱韧之, 等.扬子地块西缘天全新元古代过铝质花岗岩类成因机制及其构造动力学背景[J].岩石学报, 2015, 31(8):2245-2258. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201508009
[9] 吕锋明.四川省冕宁地区苏雄组火山岩地质及地球化学特征研究[D].成都理工大学硕士学位论文, 2016: 1-48.
http://cdmd.cnki.com.cn/Article/CDMD-10616-1016224752.htm [10] 赖绍聪, 朱韧之.四川泸定地区新元古代火山岩地球化学特征及其大陆动力学意义[J].地球科学与环境学报, 2017, 39(4):459-475. doi: 10.3969/j.issn.1672-6561.2017.04.001
[11] 卓皆文, 江卓斐, 江新胜, 等.川西新元古代苏雄组层型剖面SHRIMP锆石U-Pb年龄及其地质意义[J].地质论评, 2017, 63(1):177-188. http://d.old.wanfangdata.com.cn/Periodical/dzlp201701016
[12] 朱毓, 赖绍聪, 赵少伟, 等.扬子板块西缘石棉安顺场新元古代钾长花岗岩地球化学特征及其地质意义[J].地质论评, 2017, 63(5):1193-1208. http://d.old.wanfangdata.com.cn/Periodical/dzlp201705006
[13] 孙家聪.云南罗次澄江组下部火山岩系的发现与震旦系底界年龄的讨论[J].地质科学, 1985, (4):354-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368644
[14] 云南省地质矿产局.云南省岩石地层[M].武汉:中国地质大学出版社, 1996:55-56.
[15] 江新胜, 王剑, 崔晓庄, 等.滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J].中国科学:地球科学, 2012, 42(10):1496-1507. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201210005.htm
[16] 崔晓庄, 江新胜, 王剑, 等.滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J].现代地质, 2013, 27(3):547-556. doi: 10.3969/j.issn.1000-8527.2013.03.005
[17] 陆俊泽, 江新胜, 王剑, 等.滇东北巧家地区新元古界澄江组SHRIMP锆石U-Pb年龄及其地质意义[J].矿物岩石, 2013, 33(2):65-71. http://d.old.wanfangdata.com.cn/Periodical/kwys201302010
[18] 崔晓庄, 江新胜, 王剑, 等.云南东川地区澄江组碎屑岩源区示踪及其构造意义[J].高校地质学报, 2013, 19(增刊):67. http://d.old.wanfangdata.com.cn/Conference/7958226
[19] 云南省地质矿产局.云南省区域地质志[M].北京:地质出版社, 1990:10-12.
[20] 王铠元.云南前寒武纪地质研究概论[J].云南地质, 1998, 17(1):91-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800681710
[21] 朱炳泉, 常向阳, 邱华宁, 等.云南前寒武纪基底形成与变质时代及其成矿作用年代学研究[J].前寒武纪研究进展, 2001, 24(2):75-82. doi: 10.3969/j.issn.1672-4135.2001.02.002
[22] 杨宗良, 张正清, 李石英, 等.牟定安益地区超贫磁铁矿产出特征[J].地球学报, 2013, 34(增刊1):122-126. http://d.old.wanfangdata.com.cn/Periodical/dqxb2013z1018
[23] 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 29(增刊):600-601. http://www.cqvip.com/QK/95783X/2009S1/1003877174.html
[24] 李怀坤, 朱士兴, 相振群, 等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报, 2010, 26(7):2131-2141. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007015
[25] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
[26] 耿建珍, 张健, 李怀坤, 等. 10μm尺度锆石U-Pb年龄的LAMC-ICP-MS测定[J].地球学报, 2012, 33(6):877-884. http://www.cqvip.com/QK/98325A/201206/44141008.html
[27] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[28] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571. http://d.old.wanfangdata.com.cn/NSTLQK/10.1093-petrology-egp082/
[29] Ludwig K R. User's Manual for Isoplot 3.0:Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.
[30] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1):59-79. http://www.sciencedirect.com/science/article/pii/S000925410200195X
[31] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5):602-622. http://link.springer.com/article/10.1007/s00410-002-0364-7
[32] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[33] 周剑雄, 陈振宇.电子探针下锆石阴极发光的研究[M].成都:电子科技大学出版社, 2007:1-104.
[34] 刘兵, 巴金, 张璐, 等.北京周口店官地杂岩变质-深熔作用的锆石LA-ICP-MS U-Pb定年[J].地质科技情报, 2008, 27(6):37-42. doi: 10.3969/j.issn.1000-7849.2008.06.007
[35] Song S G, Zhang L F, Niu Y L, et al. Evolution from oceanic subduction to continental collision:a case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology, 2006, 47(3):435-455. doi: 10.1093/petrology/egi080
[36] 陈能松, 孙敏, 王勤燕, 等.东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学:地球科学, 2008, (6):657-666. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802106233
[37] 李怀坤, 陆松年, 陈志宏, 等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J].地质通报, 2003, 22(10):775-781. doi: 10.3969/j.issn.1671-2552.2003.10.005 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=2003010149&flag=1
[38] 王行军, 王根厚, 专少鹏, 等.新疆和硕县包尔图一带花岗岩LAICP-MS锆石U-Pb年龄及其地质意义[J].地质通报, 2012, 31(8):1251-1266. doi: 10.3969/j.issn.1671-2552.2012.08.005 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20120805&flag=1
[39] Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1):171-188. http://www.sciencedirect.com/science/article/pii/S0009254103001669
[40] Compston W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe[J]. Journal of Geophysical Research Solid Earth, 1984, 89(S02):525-534. doi: 10.1029/JB089iS02p0B525
[41] Mezger K, Krogstad E J. Interpretation of discordant U-Pb zircon ages:An evaluation[J]. Journal of Metamorphic Geology, 1997, 15(1):127-140. doi: 10.1111/j.1525-1314.1997.00008.x
[42] Fitzsimons I C W. Grenville-age basement provinces in East Antarctica:Evidence for three separate collisional orogens[J]. Geology, 2000, 28(10):879-882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2
[43] 吴根耀.华南的格林威尔造山带及其坍塌:在罗迪尼亚超大陆演化中的意义[J].大地构造与成矿学, 2000, 24(2):112-123. doi: 10.3969/j.issn.1001-1552.2000.02.003
[44] 王生伟, 廖震文, 孙晓明, 等.会东菜园子花岗岩的年龄、地球化学——扬子地台西缘格林威尔造山运动的机制探讨[J].地质学报, 2013, 87(1):55-70. doi: 10.3969/j.issn.0001-5717.2013.01.006
[45] 崔晓庄, 江新胜, 王剑, 等.扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J].岩石矿物学杂志, 2015, 34(1):1-13. doi: 10.3969/j.issn.1000-6524.2015.01.001
[46] Williams P J. Iron oxide copper-gold deposits:geology, spacetime distribution, and possible modes of origin[J]. Economic Geology, 2005:371-405. https://www.researchgate.net/publication/308527615_Iron_oxide_copper-gold_deposits_geology_space-time_distribution_and_possible_modes_of_origin
[47] 王奖臻, 李泽琴, 黄从俊.康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J].地球科学进展, 2012, 27(10):1074-1079. http://d.old.wanfangdata.com.cn/Conference/7955977
[48] 刘鸿允.中国震旦系[M].北京:科学出版社, 1991:1-388.
[49] 云南省地质矿产局.云南省区域地质志[M].北京:地质出版社, 1990:23-29.
[50] 王剑.华南新元古代裂谷盆地演化:兼论与Rodinia解体的关系[M].北京:地质出版社, 2000:1-131.
[51] 胡世玲, 劳秋元.震旦系地质年代学新研究[J].地质科学, 1991, (4):325-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000368899
[52] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca. 825Ma?[J]. Precambrian Research, 2003, 122(1):45-83. http://www.sciencedirect.com/science/article/pii/S0301926802002073
[53] Lee J K W, Williams I S, Ellis D J. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390(6656):159-162. doi: 10.1038/36554
[54] Cherniak D J, Watson E B. Ti diffusion in zircon[J]. Chemical Geology, 2007, 242(3/4):470-483. https://www.sciencedirect.com/science/article/abs/pii/S0009254107002148
[55] 马国干, 李华芹, 张自超.华南地区震旦纪时限范围的研究[J].宜昌地质矿产研究所所刊, 1984, (8):1-29. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.amjcard.2010.01.011/
[56] 卓皆文, 江新胜, 王剑, 等.华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式[J].中国科学:地球科学, 2013, 43(12):1952-1963. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201312006&dbname=CJFD&dbcode=CJFQ
[57] Wang J, Li Z X. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1):141-158. http://www.sciencedirect.com/science/article/pii/S0301926802002097
[58] 王剑, 李献华, Duan T Z, 等.沧水铺火山岩锆石SHRIMP U-Pb年龄及"南华系"底界新证据[J].科学通报, 2003, 48(16):1726-1731. doi: 10.3321/j.issn:0023-074X.2003.16.003
[59] Jiang X S, Jian W, Cui X Z, et al. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province (SW China) and its geological significance[J]. Science China Earth Sciences, 2012, 55(11):1815-1826. doi: 10.1007/s11430-012-4530-0
[60] 崔晓庄, 江新胜, 王剑, 等.滇中新元古代裂谷盆地充填序列及演化模式:对Rodinia超大陆裂解的响应[J].沉积学报, 2014, 32(3):399-409. http://d.old.wanfangdata.com.cn/Periodical/cjxb201403001
① 云南省地质调查院.云南1: 5万下拉古等5幅区域地质调查报告. 2017.
② 地质部云南省地质局. 1: 20万大姚幅地质报告书. 1965.
③ 地质部云南省地质局. 1: 5万戌街幅地质图说明书. 1995.
④ 地质部云南省地质局. 1: 5万老城幅地质图说明书. 1995.
⑤ 地质部云南省地质局. 1: 5万元谋县幅地质图说明书. 1995.
⑥ 刘兵, 熊波, 关奇, 等.滇中苴林群的物质组成及大地构造背景研究. 2014.
⑦ 李静, 张志斌, 熊家镛, 等.云南省成矿地质背景研究报告. 2013.
-