The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Essential features and important significance
-
摘要:
鲕粒是碳酸盐岩中最普遍的包覆颗粒之一,其成因一直是地质学家们关注的重要科学问题之一,对解释沉积环境具有重要的意义。北京西郊下苇甸剖面寒武系发育多期叠层石生物丘(层),对其进行研究发现,在崮山组上部和凤山组下部叠层石生物丘(层)中发育有大量的底栖鲕粒。分析其产出特征及微观组构形态,认为底栖鲕粒的形成与微生物作用有密切的关系,更多地支持了鲕粒微生物成因的观点,同时也增加了碳酸盐颗粒的多样性。在前人研究的基础上,追索该发现的科学含义,为深入了解微生物碳酸盐岩的形成与微生物席沉积学提供有益的线索。
Abstract:Ooids are one of the common particles in coating grains in carbonate rock. The origin of ooids has been one of the most important scientific problems to which the geologists have paid close attention. It is very important to know and explain the sedimentary environment. There are multi-period stromatolitic biostromes or stromatolitic bioherms in the Cambrian strata at the Xiaweidian section in the western suburb of Beijing. The authors found that benthic ooids are largely developed in the top part of the Gushan Formation and the lower part of the Fengshan Formation. An analysis of their formation characteristics and microscopic fabric patterns shows that the origin of benthic ooids was closely related to microbial action, thus supporting the hypothesis of microbes to some extent. What is more, the discovery increases the diversity of the carbonate particles. On the basis of previous researches, the authors have traced the scientific meaning of this problem so as to provide some useful clues for thorough understanding of the form of microbial carbonate and microbial-mat.
-
Key words:
- benthic ooids /
- stromatolite /
- Gushan Formation /
- Fengshan Formation /
- Cambrian strata
-
-
图 2 北京西郊下苇甸剖面凤山组底栖鲕粒微观特征[40]
Figure 2.
-
[1] Summons R E, Bird L R, Gillespie A L, et al. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora.[J]. Geobiology, 2013, 11(5):420-436. doi: 10.1111/gbi.2013.11.issue-5
[2] Woods A D. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments[J]. Global & Planetary Change, 2013, 105(142):91-101. https://www.researchgate.net/publication/257343049_Microbial_ooids_and_cortoids_from_the_Lower_Triassic_Spathian_Virgin_Limestone_Nevada_USA_Evidence_for_an_Early_Triassic_microbial_bloom_in_shallow_depositional_environments
[3] Krumbein W E. Stromatolities-the challenge of a term in space and time[J]. Precambrian Research, 1983, 20: 493-531. doi: 10.1016/0301-9268(83)90087-6
[4] Brehm U, Krumbein W E, Palińska K A. Microbial spheres: a novel cyanobacterial-diatom symbiosis[J]. Naturwissenschaften, 2003, 90(3): 136-140. https://www.researchgate.net/publication/10844457_Microbial_spheres_A_novel_cyanobacterial-diatom_symbiosis
[5] Brehm U, Krumbein W E, Palinska K A. Biomicrospheres generate ooids in the laboratory[J]. Geomicrobiology Journal, 2006, 23(7): 545-550. doi: 10.1080/01490450600897302
[6] Hammes F, Boon N, De Villiers J, et al. Strainspecific ureolytic microbial calcium carbonate precipitation[J]. Applide and Environmental Microbiology, 2003, 69: 4901-4909. doi: 10.1128/AEM.69.8.4901-4909.2003
[7] Contos A K, James J M, Heywood B, et al. Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from Weebubbie Cave, Australia[J]. Geomicrobiology Journal, 2001, 18: 331-343. doi: 10.1080/01490450152467822
[8] 梅冥相.鲕粒成因研究的新进展[J].沉积学报, 2012, 30(1):20-32. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201201003.htm
[9] Gerdes G, Dunajtschik-Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6): 1273-1294. doi: 10.1111/sed.1994.41.issue-6
[10] Bathurst R G C. Development in sedimentology 12:carbonate Sediments and their diagenesis[M]. Elsevier Science, Inc., 1975.
[11] Simone L. Ooids: A review[J]. Earth-Science Reviews, 1981, 16: 319-355. https://www.researchgate.net/publication/222139651_Ooids_A_review
[12] Flügel E, Munnecke A. Microfacies of carbonate rocks: analysis, interpretation and application[M]. Springer-Verlag, 2010.
[13] Flügel E. Microfacies analysis of limestones[M]. Springer Science & Business Media, 2012.
[14] 陈小炜, 牟传龙, 葛祥英, 等.华北地区寒武系第三统鲕粒滩的展布特征及其控制因素[J].石油天然气学报, 2013, 34(11): 8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201211001.htm
[15] Baud A, Richoz S, Pruss S. The lower Triassic anachronistic carbonate facies in space and time[J]. Global and Planetary Change, 2007, 55(1): 81-89. http://www.academia.edu/2586027/The_lower_Triassic_anachronistic_carbonate_facies_in_space_and_time
[16] 梅冥相.微生物席的特征和属性:微生物席沉积学的理论基础[J].古地理学报, 2014, 16(3): 285-304. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201403001.htm
[17] Sepkoski Jr J J. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna[C]//Cyclic and event stratification. Springer Berlin Heidelberg, 1982: 371-385.
[18] Pratt B R. Storms versus tsunamis: Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana[J]. Geology, 2002, 30(5): 423-426. doi: 10.1130/0091-7613(2002)030<0423:SVTDIO>2.0.CO;2
[19] Pratt B R, Bordonaro O L. Tsunamis in a stormy sea: Middle Cambrian inner-shelf limestones of western Argentina[J]. Journal of Sedimentary Research, 2007, 77(4): 256-262. doi: 10.2110/jsr.2007.032
[20] Pruss S B, Finnegan S, Fischer W W, et al. Carbonates in skeletonpoor seas: new insights from Cambrian and Ordovician strata of Laurentia[J]. Palaios, 2010, 25(2): 73-84. doi: 10.2110/palo.2009.p09-101r
[21] 王英华, 张秀莲, 杨承运.华北地台早古生代碳酸盐岩岩石学[M].北京:地震出版社, 1989:1-133.
[22] 冯增昭, 王英华, 张吉森, 等.华北地台早古生代岩相古地理[M].北京:地质出版社, 1990.
[23] 赫云兰, 刘波, 秦善, 等.北京西山下苇甸中寒武统张夏组生物丘发育特征及其地质意义[J].地质科技情报, 2012, 31(1):9-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201004.htm
[24] 卢衍豪, 张文堂, 朱兆玲, 等.关于我国寒武系建阶的建议[J].地层学杂志, 1994, 18(4):318-328. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ404.018.htm
[25] 项礼文, 李善姬, 南润善, 等.中国的寒武系[M].北京:地质出版社, 1981:1-428.
[26] 项礼文, 朱兆玲, 李善姬, 等.中国地层典 (寒武系)[M].北京:地质出版社, 2000:1-95.
[27] 梅冥相.华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J].中国地质, 2011, 38(2):317-337. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201102009.htm
[28] 陈金勇, 韩作振, 范洪海, 等.鲁西寒武系凝块石特征及其形成机制的探讨[J].地质学报, 2014, 88(6):967-980. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201406001.htm
[29] 樊爱萍, 杨仁超, 韩作振, 等.鲁西地区张夏组碳酸盐岩成岩系统[J].沉积学报, 2015, 33(1):67-79. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201501007.htm
[30] 彭善池, Bobcock L E.全球寒武系年代地层再划分的建议[J].地层学杂志, 2005, 29(1):92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200501015.htm
[31] 彭善池.全球寒武系四统划分框架正式确立[J].地层学杂志, 2006, 30(2):147-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200602009.htm
[32] 章森桂, 张允白, 严慧君".国际地层表"(2008) 简介[J].地层学杂志, 2009, 33(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200901001.htm
[33] 卢衍豪.中国的寒武系[M].北京:科学出版社, 1962.
[34] 梅冥相, 马永生, 梅仕龙, 等.华北寒武系层序地层格架及碳酸盐台地演化[J].现代地质, 1997, 11(3):275-282. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ703.003.htm
[35] Meng X H, Ge M, Tucker M E. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform[J].Sedimentary Geology, 1997, 114:189-222. doi: 10.1016/S0037-0738(97)00073-0
[36] 梅冥相, 郭荣涛, 胡媛.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J].岩石学报, 2011, 27(8):2473-2486. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201108023.htm
[37] Willis B, Blackelder E, Sargent R H. Research in China: Descriptive Topography and Geology[M]. Carnegie Institution of Washington, 1907.
[38] 鲍亦冈.北京市岩石地层[M].武汉:中国地质大学出版社, 1996.
[39] 卢衍豪, 董南庭.山东寒武纪标准剖面新观察[J].地质学报, 1952, 3:6. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195203006.htm
[40] 梅冥相, 刘丽, 胡媛.北京西郊寒武系凤山组叠层石生物层[J].地质学报, 2015, (2):440-461. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201502018.htm
[41] Perry C T. Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates[J]. Sedimentology, 1998, 45(1): 39-51. doi: 10.1046/j.1365-3091.1998.00134.x
[42] Golubic S, Seong-Joo L, Browne K M. Cyanobacteria: architects of sedimentary structures[C]//Microbial sediments. Springer Berlin Heidelberg, 2000: 57-67.
[43] Perry C T, Macdonald I A. Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 186(1): 101-113. https://www.researchgate.net/publication/228474587_Impacts_of_light_penetration_on_the_bathymetry_of_reef_microboring_communities_Implications_for_the_development_of_microendolithic_trace_assemblages
[44] Garcia-Pichel F. Plausible mechanisms for the boring on carbonates by microbial phototrophs[J]. Sedimentary Geology, 2006, 185(3): 205-213. https://www.researchgate.net/publication/222655040_Plausible_mechanisms_for_the_boring_on_carbonates_by_microbial_phototrophs
[45] Chacón E, Berrendero E, Pichel F G. Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico[J]. Sedimentary Geology, 2006, 185(3): 215-228. https://www.researchgate.net/profile/Esther_Berrendero/publication/222041778_Biogeological_signatures_of_microboring_cyanobacterial_communities_in_marine_carbonates_from_Cabo_Rojo_Puerto_Rico/links/54649a760cf2cb7e9daa6352.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
[46] 孟祥化, 葛铭.中朝板块层序·事件·演化[M].北京:地质出版社, 2004:157-332.
[47] Pinckney J L, Reid R P. Productivity and community composition of stromatolitic microbialmats in the Exuma Cays, Bahamas[J]. Facies, 1997, 36: 204-207.
[48] Riding R. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47:179-214. doi: 10.1046/j.1365-3091.2000.00003.x
[49] Schieber J, Arnott H J. Nannobacteria as a byproduct of enzymedriven tissue decay[J]. Geology, 2003, 31:717-720. doi: 10.1130/G19663.1
[50] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96: 141-162. doi: 10.1016/j.earscirev.2008.10.005
[51] 梅冥相.微生物席沉积学:一个年轻的沉积学分支[J].地球科学进展, 2011, 26(6):586-597. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201106003.htm
[52] Riding R. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers[J]. Geology, 2002, 30(1):31-34. doi: 10.1130/0091-7613(2002)030<0031:BAOPCC>2.0.CO;2
[53] Kahle C F J. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria (?), and biofilms[J]. Carbonates & Evaporites, 2007, 22(1):10-22. https://www.researchgate.net/publication/225320506_Proposed_origin_of_aragonite_Bahaman_and_some_Pleistocene_marine_ooids_involving_bacteria_nannobacteria_and_biofilms
[54] VasconcelosC, Warthmann R, McKenzie JA, et al. Lithifying microbialmats in Lagoa Vermelha, Brazi:l Modern Precambrian relics[J]. Sedimentary Geology, 2006, 185: 175-183. doi: 10.1016/j.sedgeo.2005.12.022
[55] Reid R P, Visscher P T, Decho A W, et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J]. Nature, 2000, 406(6799): 989-992. doi: 10.1038/35023158
[56] Diaz M R, Swart P K, Eberli G P, et al. Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 2015, 62:2090-2112. doi: 10.1111/sed.12218
[57] Diaz M R, Norstrand J D V, Eberli G P, et al. Functional gene diversity of oolitic sands from Great Bahama Bank.[J]. Geobiology, 2014, 12(3):231-249. doi: 10.1111/gbi.2014.12.issue-3
[58] Decho A W, Reid R P, Visscher P T. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(1):71-86. https://www.researchgate.net/publication/228707511_Production_and_cycling_of_natural_microbial_exopolymers_EPS_within_a_marine_stromatolite
[59] Riege H. Untersuchungen zur Carbonaqallung in Mikrobenmatten[D]. University of Oldenburg PhD Thesis, 1994.
[60] Riege H., Gerdes G, Krumbein W.E. Contribution of heterotrophic bacteria to the formation of CaCO3 aggregates in hypersaline microbial mats[J]. Kieler Meeresforschungen, 1991, 8:168-172.
-