大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义

谭皓元, 和钟铧, 陈飞, 杜岳丹, 任子慧. 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质通报, 2017, 36(5): 893-908.
引用本文: 谭皓元, 和钟铧, 陈飞, 杜岳丹, 任子慧. 大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质通报, 2017, 36(5): 893-908.
TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(5): 893-908.
Citation: TAN Haoyuan, HE Zhonghua, CHEN Fei, DU Yuedan, REN Zihui. Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(5): 893-908.

大兴安岭中段索伦地区白音高老组火山岩锆石U-Pb年龄、地球化学特征及构造意义

  • 基金项目:
    中国地质调查局项目《内蒙古兴安盟科右前旗索伦地区1:5万马家沟、阿林一合、平安屯幅区域地质调查》(编号:12120114012901)
详细信息
    作者简介: 谭皓元(1990-), 男, 在读硕士生, 构造地质学专业。E-mail:523727718@qq.com
  • 中图分类号: P534.53;P597+.3

Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications

  • 白音高老组火山岩位于大兴安岭中段科右前旗索伦地区,主要岩性为流纹岩和流纹质晶屑凝灰岩。LA-ICP-MS锆石U-Pb同位素分析表明,3组样品的锆石U-Pb年龄分别为127±2Ma、133±2Ma和123±1Ma,即白音高老组火山岩形成于133~123Ma,为早白垩世岩浆活动的产物。岩石学和岩石地球化学特征显示,白音高老组火山岩类似于高分异的Ⅰ型花岗岩,有斜长石和少量角闪石部分熔融残留。锆石的176Hf/177Hf值介于0.282854~0.283026之间,εHft)为较高的正值,变化于+5.5~+11.5之间,Hf二阶段模式年龄(TDM2)为828~439Ma,表明兴安地块地壳的主体增生年代为新元古代—显生宙。通过对比东北地区(以邻区为主)同时代岩浆-构造活动,研究区内白音高老组火山岩形成于伸展构造环境,这种伸展构造环境的形成可能与古太平洋板块俯冲于欧亚大陆之下的弧后伸展环境有关。

  • 加载中
  • 图 1  东北地区构造简图(a)和研究区地质简图(b)

    Figure 1. 

    图 图版Ⅰ 

    Figure 图版Ⅰ. 

    图 2  白音高老组火山岩代表性锆石的阴极发光(CL)图像

    Figure 2. 

    图 3  LA-ICP-MS锆石U-Pb谐和图

    Figure 3. 

    图 4  白音高老组火山岩TAS(a)、SiO2-K2O(b)和A/CNK-A/NK图解(c)

    Figure 4. 

    图 5  球粒陨石标准化稀土元素配分曲线(a)[20]和原始地幔标准化微量元素蛛网图(b)[21]

    Figure 5. 

    图 6  白音高老组火山岩SiO2-P2O5 (a)、SiO2-Al2O3 (b)、Rb-Th (c)和Rb-Y (d)图解

    Figure 6. 

    图 7  白音高老组火山岩Sr-Ba图解(a)和锆石t-εHf(t)图解(b)

    Figure 7. 

    图 8  白音高老组火山岩Y-Nb(a)和(Y+Nb)-Rb(b)图解

    Figure 8. 

    表 1  白音高老组火山岩LA-ICP-MS锆石U-Th-Pb分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb data for volcanic rocks of Baiyingaolao Formation

    样品编号PbThU Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    /10-6比值比值比值年龄/Ma年龄/Ma
    P23-26-2 样品岩性为流纹岩
    024.481011810.560.04830.00300.1320.00800.01970.0005812671264
    035.941082530.430.04830.00320.1320.00840.01980.0006112681274
    043.7997.61550.630.05140.00530.1360.0140.01920.00075130121235
    054.311171660.710.04770.00320.1320.00860.02020.0006112681294
    064.4885.71780.480.04570.00260.1300.00730.02070.0005912571324
    0712.65474361.260.04700.00160.1300.00460.02010.0005112441283
    0811.82904630.630.04650.00170.1310.00490.02040.0005212541303
    0921.25256160.850.05560.00710.1520.0190.01980.00060143161264
    108.352373100.760.04620.00260.1310.00720.02060.0005912561314
    116.531441980.730.05520.00590.1650.0170.02170.00063155151384
    129.314043041.330.04620.00250.1320.00700.02070.0005812661324
    136.51712620.650.04830.00320.1310.00860.01980.0006112581264
    145.871662240.740.04780.00350.1330.00950.02030.0006412781294
    159.984593561.290.05380.00270.1410.00700.01910.0005313461223
    169.863603660.980.05030.00220.1350.00610.01950.0005212851243
    176.191192000.590.04770.00490.1460.0140.02230.00067139131424
    184.861331860.720.05000.00310.1380.00840.02000.0005913171274
    1911.15263781.390.05020.00180.1360.00500.01960.0005012941253
    2012.14934281.150.05000.00190.1380.00530.02000.0005213151283
    2113.95834661.250.04760.00220.1320.00600.02010.0005412651283
    2210.72754400.630.05290.00250.1390.00670.01910.0005313261223
    2318.44977180.690.04720.00160.1290.00460.01990.0005012341273
    245.322161941.110.04870.00250.1310.00670.01950.0005312561243
    2511.26533701.760.05480.00200.1400.00530.01850.0004813351183
    P18-3-1 样品岩性为流纹质凝灰岩
    012.7048.71080.450.04770.00360.1420.0110.02170.00068135101384
    024.731051840.570.04900.00230.1460.00690.02160.0005913861384
    032.7646.81130.420.04810.00380.1430.0110.02160.00071136101384
    042.7251.11140.450.04980.00320.1400.00880.02050.0006113381314
    0514.83835910.650.05100.00150.1430.00460.02030.0005213541303
    064.4351.11440.360.05120.00300.1880.0110.02660.0007817591695
    076.531542620.590.04850.00260.1380.00740.02070.0005913271324
    086.551312610.50.05030.00200.1460.00590.02100.0005613851344
    095.451012130.480.05070.00230.1500.00700.02150.0005914261374
    104.231191310.90.05300.00710.1630.0210.02230.00073153181425
    115.851342270.590.05180.00220.1500.00660.02090.0005614161344
    126.861522850.530.05100.00280.1400.00770.01990.0005713371274
    136.862132370.90.05270.00370.1530.0110.02110.0006714591354
    141.0831.241.60.750.05500.0100.1550.0290.02050.0011146251307
    155.421062240.470.05470.00250.1510.00700.02010.0005414361283
    164.411111770.630.05480.00320.1490.00860.01980.0005814181264
    174.9290.91880.480.04880.00260.1450.00770.02160.0005913771384
    189.944603011.530.05120.00200.1490.00590.02110.0005414151353
    193.3555.21290.430.04850.00370.1460.0110.02190.00067139101404
    204.6396.61810.530.05220.00250.1480.00720.02060.0005514061313
    214.491461610.910.05210.00270.1480.00770.02060.0005614071324
    226.72892461.170.05680.00360.1450.00910.01850.0005613781184
    235.621352170.620.05010.00300.1410.00830.02040.0005713471304
    241.9537.974.80.510.05420.00430.1540.0120.02070.00064146111324
    255.891932310.840.05360.00380.1420.00980.01920.0005913491224
    AB7112 样品岩性为英安质岩屑晶屑角砾凝灰岩
    015.4876.62210.350.04930.00160.1290.00380.01890.0003112331212
    027.052052570.80.04850.00120.1310.00270.01960.0003012521252
    037.8252.82420.220.04980.00240.1280.00580.01860.0003712251192
    044.9670.81950.360.05170.00160.1340.00360.01890.0003012831202
    056.611122760.410.04920.00120.1250.00260.01840.0002811921182
    067.5282.33060.270.04880.00120.1300.00260.01940.0002912421242
    075.8195.32380.40.04830.00120.1260.00270.01890.0002912021212
    084.9385.81920.450.06100.00240.1630.00580.01940.0003115351242
    098.4791.73470.260.04740.00110.1270.00250.01950.0003012221242
    106.511232550.480.04840.00110.1260.00230.01890.0002812121212
    114.8681.41920.420.04710.00120.1260.00280.01940.0003012121242
    126.3481.52460.330.05020.00110.1320.00250.01910.0002912621222
    136.791052770.380.05210.00120.1390.00250.01940.0002913221242
    146.211092480.440.04810.00120.1280.00280.01930.0003012231232
    156.5985.42770.310.04980.00120.1320.00270.01930.0003012621232
    164.25661700.390.04790.00240.1200.00560.01810.0003111551162
    176.5762.52700.230.04770.00120.1300.00270.01980.0003112421262
    184.9489.11950.460.04890.00130.1330.00300.01980.0003112731262
    194.941011750.580.04670.00110.1310.00260.02040.0003112521302
    207.672082730.760.04980.00110.1350.00250.01970.0003012921262
    217.19972780.350.04960.00110.1350.00240.01970.0003012821262
    228.42243150.710.04980.00120.1330.00290.01940.0003112731242
    下载: 导出CSV

    表 2  白音高老组火山岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace and REEs data for volcanic rocks of Baiyingaolao Formation

    样品号P23-26-1P23-26-2P24-4-2P24-5-1P18-3-1P15-17-1P2-1-1PB3073AB9145-3PB9012PB4061
    岩石名称流纹岩流纹岩流纹岩流纹岩流纹质凝灰岩流纹岩流纹质熔结凝灰岩流纹岩流纹质晶屑熔岩流纹质晶屑凝灰岩流纹岩
    SiO277.1579.9475.9675.0574.7269.6372.8875.2876.1976.6074.84
    TiO20.080.050.120.150.200.440.230.140.140.140.1
    Al2O311.8310.4913.0013.4913.0615.2613.7713.6113.1812.4913.96
    Fe2O30.561.011.061.361.261.602.651.151.071.061.14
    FeO0.080.130.290.170.551.150.750.690.080.170.55
    MnO0.030.070.030.020.050.080.050.040.050.030.01
    MgO0.100.170.400.230.310.360.200.190.160.080.17
    CaO0.110.170.310.361.770.690.330.170.190.220.15
    Na2O1.031.603.382.933.904.784.593.663.252.823.64
    K2O8.294.823.934.602.934.574.614.364.445.424.67
    P2O50.020.020.040.060.080.090.050.040.030.020.03
    烧失量0.601.321.351.421.071.200.631.321.030.881.27
    总量99.8999.7699.7599.7799.8899.79100.65100.6799.7799.87100.49
    A/CNK1.091.281.251.291.021.081.051.231.251.141.23
    A/NK1.111.331.321.381.361.191.101.271.301.191.26
    Ba5481480637705494749961783767236971
    Rb51515111211965.699.595.7102149180118
    Sr125115120123291195488117116155107
    Y1525.615.115.712.934.726.115.214.817.315
    Zr38.59612712086.6272329147122162155
    Nb5.629.397.486.666.8813.38.857.008.3421.87.09
    Th9.7311.1109.937.106.056.9511.26.9011.111.7
    Pb6324.922.419.718.921.113.114.420.920.717.7
    Ga10.99.081412.815.818.120.213.515.115.415.6
    Zn83.437.757.928.533.768.210191.832.440.613.4
    Cu1.762.312.212.023.133.1310.72.213.589.552.69
    Ni0.562.862.230.992.540.862.881.790.570.481.06
    V1.210.467.045.3825.83.9885.55.111314.53.75
    Cr3.513.621.932.555.292.932.962.105.587.581.95
    Hf1.573.464.003.653.076.907.974.274.146.174.96
    Cs8.204.373.934.502.804.16113.246.274.682.16
    Sc2.032.212.222.123.705.9211.82.052.293.153.14
    Ta0.480.650.700.630.510.800.500.750.831.510.63
    Co0.320.331.470.972.850.998.500.480.530.280.13
    U3.904.022.892.412.102.141.812.935.454.103.2
    La9.2226.32627.22337.732.527.824.444.128.5
    Ce25.351.150.249.542.582.768.346.64465.855.3
    Pr3.156.716.156.375.2410.99.046.054.988.296.23
    Nd11.723.721.222.118.64338.42217.828.922.4
    Sm2.614.173.723.793.338.497.513.622.874.603.54
    Eu0.290.450.470.500.551.621.690.500.540.350.25
    Gd2.063.422.933.062.576.625.882.893.265.422.86
    Tb0.430.620.500.510.431.211.090.450.450.690.48
    Dy2.363.422.512.562.226.185.032.502.233.132.57
    Ho0.500.740.500.510.441.260.960.480.460.630.48
    Er1.412.131.411.441.183.382.461.451.452.051.54
    Tm0.280.410.290.280.220.600.450.250.260.350.32
    Yb1.742.581.881.841.383.792.501.951.772.242.02
    Lu0.410.510.430.430.310.940.360.300.340.440.31
    Eu/Eu*0.370.350.420.440.550.640.750.450.540.210.24
     注:主量元素含量单位为%,微量和稀土元素为 10-6
    下载: 导出CSV

    表 3  白音高老组火山岩锆石Hf同位素分析结果

    Table 3.  Zircon Hf isotopic data for volcanic rocks of Baiyingaolao Formation

    样品编号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177Hf±2σ176Hf/177HfεHf(0)εHf(t)±2GTDM1/MaTDM2 /MafLu/Hf
    AB7112英安质岩屑晶屑角砾凝灰岩
    011210.0395280.0011800.2829150.0000210.28248157.60.8481693-0.96
    021250.0243340.0006960.2829530.0000270.2826976.49.11420600-0.98
    031190.0438310.0013310.2829860.0000310.2824967.610.11.1380532-0.96
    041200.0212440.0006900.2829200.0000280.2826665.27.81467679-0.98
    051180.0260170.0008600.2830260.0000360.282710911.51.3319439-0.97
    061240.0459120.0014930.2829310.0000320.2823825.68.21.1461655-0.96
    071210.0242700.0007590.2829330.0000280.2826535.78.31450650-0.98
    081240.0488490.0015990.2830080.0000360.2824208.310.91.3351481-0.95
    091240.0374600.0011800.2828540.0000250.2824202.95.50.9567828-0.96
    101210.0383280.0011650.2829110.0000260.2824824.97.50.9486702-0.96
    111240.0609430.0019840.2829380.0000330.2822085.98.41.2458643-0.94
    121220.0581750.0018530.2829160.0000290.2822345.17.61488694-0.94
    131240.0233880.0006630.2829590.0000220.2827166.69.30.8411587-0.98
    141230.0447540.0012940.2828930.0000250.2824174.36.90.9514742-0.96
    151230.0395680.0011500.2829280.0000240.2825055.58.10.9461661-0.97
    161160.0386940.0011930.2829300.0000270.2824915.681460662-0.96
    171260.0389900.0014050.2829230.0000370.2824065.381.3472672-0.96
    181260.0472450.0017000.2828990.0000350.2822734.57.11.2511729-0.95
    191300.0251290.0008240.2829360.0000280.2826325.88.61447638-0.98
    201260.0272420.0008000.2829620.0000230.2826686.79.40.8409580-0.98
    下载: 导出CSV

    表 4  大兴安岭中段索伦地区中生代地层划分对比

    Table 4.  Division and correlation of Mesozoic strata inSuolun area of central Da Hinggan Mountains

    内蒙古地质志[7] 内蒙古自治区岩石地层[24] 本文
    伊列克得组 J3y 梅勒图组 K1m 梅勒图组 K1m
    上库力组三段 J3s3 白音高老组 J3b 白音高老组 K1b
    上库力组二段 J3s2 玛尼吐组 J3mn 玛尼吐组 K1 mn
    上库力组一段 J3s1
    木瑞组 J3m 满克头鄂博组 J3m 满克头鄂博组 J3m
    吉祥峰组 J3j
    塔木兰沟组 J2tm 塔木兰沟组 J2tm 塔木兰沟组 J2tm
    下载: 导出CSV
  • [1]

    蒋国源, 权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所文集, 1988, 3:23-100. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800019003.htm

    [2]

    赵国龙, 杨桂林, 王忠, 等.中南部中生代火山岩[M].北京:北京科学技术出版社, 1989.

    [3]

    林强, 葛文春, 孙德有, 等.东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm

    [4]

    葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-406. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903007.htm

    [5]

    张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D]. 吉林大学硕士学位论文, 2006.

    [6]

    张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学博士学位论文, 2009.

    [7]

    内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991:1-725.

    [8]

    Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia[J].Earth and Planetary Science Let-ters, 2006, 251(1):179-198. https://www.researchgate.net/profile/Xin-Hua_Zhou/publication/222410896_Late_Mesozoic_volcanism_in_the_Great_Xing%27an_Range_NE_China_Timing_and_implications_for_the_dynamic_setting_of_NE_Asia/links/02e7e522537cc420ca000000/Late-Mesozoic-volcanism-in-the-Great-Xingan-Range-NE-China-Timing-and-implications-for-the-dynamic-setting-of-NE-Asia.pdf

    [9]

    Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J]. Lithos, 2008, 102(1):138-157.

    [10]

    Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Im-plications for subduction-induced delamination[J]. Chemical Geolo-gy, 2010, 276(3):144-165. http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions

    [11]

    Wu F Y, Walker R J, Ren X, et al.Osmium Isotopic Constraints on the Age of Lithospheric Mantle Beneath Northeastern China[J]. Chemical Geology, 2003, 196(1):107-129. https://www.researchgate.net/publication/223399827_Osmium_isotopic_constraints_on_the_age_of_lithospheric_mantle_beneath_northeastern_China

    [12]

    Wu F Y, Lin J Q, Wilde S A, et al.Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J].Earth and Planetary Science Letters, 2005, 233(1):103-119. https://www.researchgate.net/publication/222992706_Nature_and_significance_of_the_Early_Cretaceous_giant_igneous_event_in_eastern_China

    [13]

    Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozo-ic Granitoids in Northeastern China[J]. Journal of Asian Earth Sci-ences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    [14]

    Koschek G.Origin and significance of the SEM cathodolumines-cence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3

    [15]

    Belousova E, Griffin W L, O'Reilly S Y, et al.Igneous Zircon:Trace Element Composition as An Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7

    [16]

    Anderson T.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb[J].Chemical Geology, 2003, 192:59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb

    [17]

    Yang J H, Wu F Y, Wilde S A, et al.Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton:Geochronological, geochemical and Nd-Hf isotopic evi-dence[J]. Precambrian Research, 2008, 167:125-149. doi: 10.1016/j.precamres.2008.07.004

    [18]

    Blichert-Toft J, Albarède F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-crust System[J].Earth and Planetary Science Letters, 1997, 148(1):243-258. https://www.researchgate.net/publication/260885945_The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_systemEarth_Planet_Sci_Lett_148_1997_243-258

    [19]

    Veevers J J, Saeed A, Belousova E A, et al.U-Pb Ages and Source Composition by Hf-isotope and Trace-element Analysis of Detri-tal Zircons in Permian Sandstone and Modern Sand from South-western Australia and A Review of the Paleogeographical and De-nudational History of the Yilgarn Craton[J]. Earth-Science Re-views, 2005, 68(3):245-279.

    [20]

    Boynton W V, Cosmochemisty of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.

    [21]

    Sun S S, McDongough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins. Geological Society of Special Publication, London, 1989, 42:313-345.

    [22]

    Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zir-con[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):327-341. doi: 10.2113/0530327

    [23]

    许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及构造意义[J].矿物岩石地球化通报, 2008, 27(增刊):286-287. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089738.htm

    [24]

    内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996:1-344.

    [25]

    葛文春, 李献华, 林强, 等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 2001, 36(2):176-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200102005.htm

    [26]

    苟军, 孙德有, 赵忠华, 等.满洲里南部白音高老组流纹岩锆石UPb定年及岩石成因[J].岩石学报, 2010, 26(1):333-344. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001038.htm

    [27]

    王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm

    [28]

    Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Forma-tion in the central Great Xing' an Range, NE China, and its tecton-ic implications[J].Lithos, 2014, 205:168-184. doi: 10.1016/j.lithos.2014.07.004

    [29]

    Kong Y M, Ma R, He Z H, et al.Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhongqi area, Inner Mongolia[J].Global Geology, 2014, 17(2):78-85.

    [30]

    赵书跃, 韩彦东, 朱春燕, 等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报, 2004, 10(3):276-287. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200403009.htm

    [31]

    林强, 葛文春, 孙德有, 等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报, 2000, 30(4):322-328. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200004002.htm

    [32]

    林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303001.htm

    [33]

    葛文春, 林强, 李献华, 等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石, 2000, 28(3):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200003002.htm

    [34]

    葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm

    [35]

    张连昌, 陈志广, 周新华, 等.大兴安岭根河地区早白垩世火山岩深部源区与构造岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J].岩石学报, 2007, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013

    [36]

    郭锋, 范蔚茗, 王岳军, 等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 2001, 17(1):161-168. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm

    [37]

    McDonough W F, Sun S S.The Composition of the Earth[J]. Chemical geology, 1995, 120(3):223-253.

    [38]

    Taylor S R, McLennan S M.The Continental Crust:Its Composi-tion and Evolution[M].Blackwell:Oxford Preess, 1985:1-312.

    [39]

    Pearce J A.Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths, Nantwich, Cheshire:Shiva Publications, 1983:230-249.

    [40]

    Tischendorf G, Paelchen W.Zur Klassifikation von Granitoiden[J]. Classification of Granitoids Zeitschrift Fuer Geologische Wissen-schaften, 1985, 13(5):615-627.

    [41]

    Wilson M.Igneous Petrogenesis[M].London:Unwin Hywin Press, 1989:295-323.

    [42]

    Bea F, Fershtater G, Corretgé L G.The Geochemistry of Phospho-rus in Granite Rocks and the Effect of Aluminium[J].Lithos, 1992, 29(1):43-56.

    [43]

    Wu F, Jahn B, Wilde S, et al.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics, 2000, 328(1):89-113. https://www.researchgate.net/publication/223576713_Phanerozoic_crustal_growth_U-Pb_and_Sr-Nd_isotopic_evidence_from_the_granites_in_northeastern_China

    [44]

    Wu F, Sun D, Li H, et al.A-type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis[J].Chemi-cal Geology, 2002, 187(1):143-173. https://www.researchgate.net/publication/223536562_A-type_granites_in_Northeastern_China_Age_and_geochemical_constraints_on_their_petrogenesis

    [45]

    Wu F, Jahn B, Wilde S A, et al.Highly Fractionated I-type Granites in NE China (I):Geochronology and Petrogenesis[J].Lithos, 2003, 66(3):241-273. https://www.researchgate.net/publication/222062598_Highly_fractionated_I-type_granites_in_NE_China_I_Geochronology_and_petrogenesis

    [46]

    Jahn B, Wu F, Chen B.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92. https://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic

    [47]

    Jahn B M, Wu F Y, Capdevila R, et al.Highly Evolved Juvenile Granites with Tetrad REE Patterns:the Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China[J].Lithos, 2001, 59(4):171-198. doi: 10.1016/S0024-4937(01)00066-4

    [48]

    Jahn B, Capdevila R, Liu D, et al.Sources of Phanerozoic Granit-oids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geo-chemical and Nd Isotopic Evidence, and Implications for Phanero-zoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1

    [49]

    吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    [50]

    隋振民. 大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D]. 吉林大学博士学位论文, 2007.

    [51]

    隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-480. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm

    [52]

    周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201105014.htm

    [53]

    Lightfoot P C, Hawkesworth C J, Sethna S F.Petrogenesis of Rhyo-lites and Trachytes from the Deccan Trap:Sr, Nd and Pb Isotope and Trace Element Evidence[J].Contributions to Mineralogy and Petrology, 1987, 95(1):44-54. doi: 10.1007/BF00518029

    [54]

    Green T H.Experimental Studies of Trace-element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 years later[J].Chem-ical Geology, 1994, 117(1):1-36.

    [55]

    张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276.

    [56]

    Shao J A, Zang S X, Mou B L, et al.Extensional tectonics and asthe-nospheric upwelling in the orogenic belt:a case study from Hing-gan-Mongolia Orogenic belt[J].Chinese Science Bulletin, 1994, 39:533-537.

    [57]

    邵济安, 张履桥, 牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑), 1998, 28(3):193-200. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199803000.htm

    [58]

    邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904025.htm

    [59]

    邵济安, 李献华, 张履桥, 等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学, 2001, 30(6):517-524. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200106002.htm

    [60]

    邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, 75(1):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101010.htm

    [61]

    邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102012.htm

    [62]

    Fan W M, Guo F, Wang Y J, et al.Late Mesozoic Calc-alkaline Vol-canism of Post-orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J].Journal of Volcanology and Geo-thermal Research, 2003, 121(1):115-135. https://www.researchgate.net/profile/Feng_Guo8/publication/223489977_Late_Mesozoic_calc-alkaline_volcanism_of_post-orogenic_extension_in_the_northern_Da_Hinggan_Mountains_northeastern_China/links/0deec52856d217b3e9000000.pdf?disableCoverPage=true

    [63]

    高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503015.htm

    [64]

    孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2011, 27(4):1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm

    [65]

    秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早白垩世A型花岗岩锆石LA-ICP-MS测年、地球化学特征及其地质意义[J].吉林大学学报(地球科学版), 2012, S3:154-165. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3017.htm

    [66]

    施璐, 郑常青, 姚文贵, 等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309006.htm

    [67]

    张履桥, 邵济安, 郑广瑞.内蒙古甘珠尔庙变质核杂岩[J].地质科学, 1998, 33(2):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.001.htm

    [68]

    张玉涛, 张连昌, 英基丰, 等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2733-2742. doi: 10.3969/j.issn.1000-0569.2006.11.011

    [69]

    王涛.花岗岩研究与大陆动力学[J].地学前缘, 2000, (7):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2000S2020.htm

    [70]

    刘宝山, 任凤和, 李仰春, 等.伊春地区晚印支期Ⅰ型花岗岩带特征及其构造背景[J].地质与勘探, 2007, 43(1):74-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200701014.htm

  • 加载中

(9)

(4)

计量
  • 文章访问数:  396
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2016-10-26
修回日期:  2017-01-20
刊出日期:  2017-05-25

目录