湘西花垣地区铅锌矿床C、H、O同位素特征及其对成矿流体来源的指示

周云, 段其发, 唐菊兴, 曹亮, 彭三国, 甘金木. 湘西花垣地区铅锌矿床C、H、O同位素特征及其对成矿流体来源的指示[J]. 地质通报, 2017, 36(5): 823-833.
引用本文: 周云, 段其发, 唐菊兴, 曹亮, 彭三国, 甘金木. 湘西花垣地区铅锌矿床C、H、O同位素特征及其对成矿流体来源的指示[J]. 地质通报, 2017, 36(5): 823-833.
ZHOU Yun, DUAN Qifa, TANG Juxing, CAO Liang, PENG Sanguo, GAN Jinmu. Carbon, hydrogen and oxygen isotopes of the Huayuan Pb-Zn ore deposit in western Hu'nan Province and their implications for the source of ore-forming fluid[J]. Geological Bulletin of China, 2017, 36(5): 823-833.
Citation: ZHOU Yun, DUAN Qifa, TANG Juxing, CAO Liang, PENG Sanguo, GAN Jinmu. Carbon, hydrogen and oxygen isotopes of the Huayuan Pb-Zn ore deposit in western Hu'nan Province and their implications for the source of ore-forming fluid[J]. Geological Bulletin of China, 2017, 36(5): 823-833.

湘西花垣地区铅锌矿床C、H、O同位素特征及其对成矿流体来源的指示

  • 基金项目:
    国家自然科学基金项目《西藏雄村斑岩型Cu-Au矿集区Ⅰ号矿体富CH4成矿流体演化过程研究》(批准号:41502079)、《西藏尼雄矽卡岩铁矿成矿流体演化与成矿作用机制》(批准号:41503040)和中国地质调查局项目《湘西-鄂西成矿带神农架—花垣地区地质矿产调查》(编号:DD20160029)、《湘西-鄂西成矿带资源远景调查评价》(编号:12120114008001)
详细信息
    作者简介: 周云(1984-), 女, 在读博士生, 助理研究员, 从事成矿规律研究与成矿预测工作。E-mail:zhouyun0910@163.com
  • 中图分类号: P597+.2;P618.4

Carbon, hydrogen and oxygen isotopes of the Huayuan Pb-Zn ore deposit in western Hu'nan Province and their implications for the source of ore-forming fluid

  • 湘西花垣地区铅锌矿床是铅锌矿资源储量超过千万吨的世界级超大型矿床之一。对该矿床主矿化期的方解石和闪锌矿进行了系统的C、H、O同位素研究。分析结果显示,花垣地区铅锌矿床主成矿期方解石样品的δ13CPDB值范围为-2.71‰~1.21‰,δ18OSMOW值范围为16.09‰~22.48‰,团结、李梅、土地坪、蜂塘和大石沟各铅锌矿床中主成矿期方解石的13C、18O同位素依次表现出逐渐降低的特征,在δ18OSMOW13CPDB图上主要介于原生碳酸盐岩与海相碳酸盐岩之间,该地区铅锌矿床成矿流体中的碳主要来源于海相碳酸盐岩的溶解作用。花垣矿区围岩的δ13CPDB值范围为0.15‰~1.17‰,δ18OSMOW值范围为19.79‰~23.89‰,指示沉积成因海相碳酸盐岩的特征。方解石和闪锌矿样品中流体的δDSMOW变化于-91.1‰~-15‰之间,δ18Ofluid变化范围为-4.1‰~9.25‰,在矿区范围内流体的迁移方向是由北向南,δ18Ofluid-δDSMOW图显示,矿床成矿流体的主要来源是建造水和大气降水。成矿流体与围岩间的水-岩反应是导致湘西花垣地区铅锌矿床中方解石和闪锌矿矿物发生沉淀的主要机制。

  • 加载中
  • 图 1  湘西北铅锌矿带区域构造略图(据参考文献[11]修改)

    Figure 1. 

    图 图版Ⅰ   

    Figure 图版Ⅰ. 

    图 2  湘西花垣地区铅锌矿床成矿期方解石C、O同位素图解(底图据参考文献[28])

    Figure 2. 

    图 3  湘西花垣地区铅锌矿床成矿流体O-D同位素组成图解(底图据参考文献[30])

    Figure 3. 

    表 1  湘西花垣地区铅锌矿床主成矿期方解石C、O同位素组成

    Table 1.  C and O isotopic compositions of calcites from the Huayuan Pb-Zn ore deposit in western Hu'nan

    矿区原样品号样品名称δ13CPDB/‰δ18OPDB/‰δ18OSMOW/‰
    团结11TJ-1B9斑脉状方解石0.04-8.2722.33
    11TJ-1B9斑脉状方解石0.05-8.2322.38
    11TJ-1B11斑脉状方解石0.13-8.1322.48
    11TJ-1B12斑脉状方解石-0.24-8.2822.32
    11TJ-1B14斑脉状方解石0.43-8.7521.84
    13TJ-B1大脉块状方解石0.29-8.5422.06
    13TJ-B10斑脉状方解石0.17-9.1821.40
    13TJ-B13桁脉状方解石0.11-8.4622.14
    13TJ-B18桁脉状方解石-0.61-10.7719.76
    13TJ-B18桁脉状方解石-0.61-10.7619.77
    李梅13LM-B9桁脉状方解石0.88-9.3921.18
    13LM-B11大脉块状方解石1.21-9.6620.90
    13LM-B13-1大脉块状方解石1.12-10.4920.05
    13LM-B31-1大脉块状方解石1.16-10.2820.26
    13HYC-B5斑脉状方解石-2.71-12.3518.13
    13HYC-B7斑脉状方解石-0.50-10.3220.22
    土地坪13TDP-B3桁脉状方解石-0.90-12.3518.13
    13TDP-2B3桁脉状方解石-1.33-13.1517.30
    13TDP-2B3桁脉状方解石-1.41-13.2317.22
    蜂塘13FT-B9斑脉状方解石-0.85-11.1719.35
    13FT-B16斑脉状方解石-1.03-11.9318.56
    13FT-B16斑脉状方解石-1.00-11.8518.64
    13FT-B23斑脉状方解石-1.01-11.1819.33
    13FT-B24斑脉状方解石-2.24-12.4718.01
    大石沟13DSG-B1斑脉状方解石-1.82-13.0517.41
    13DSG-B3斑脉状方解石-1.55-14.3316.09
    13DSG-B6桁脉状方解石-2.60-13.8116.62
    13DSG-B7斑脉状方解石-1.29-12.1118.38
    注:δ18OSMOW=1.03086×δ18OPDB+30.86[26]
    下载: 导出CSV

    表 2  湘西花垣地区铅锌矿床碳酸盐岩围岩的C、O同位素组成

    Table 2.  C and O isotopic compositions of calcites from the Huayuan Pb-Zn ore deposit in western Hu'nan

    矿区原样品号样品名称δ13CPDB/‰δ18OPDB/‰δ18OSMOW/‰数据来源
    团结13NZB-B17灰岩0.72-8.5222.08本文
    13NZB-B21-1灰岩0.92-7.6023.03
    13NZB-B21-2灰岩0.97-7.4823.15
    13HYC-B21灰岩0.15-9.3021.27
    13HYC-B22灰岩0.57-7.9222.70
    李梅13LM-B23灰岩1.17-8.8321.76本文
    13LM-B28灰岩0.55-9.4421.13
    13LM-B30灰岩0.62-9.8020.76
    L16-4无矿化藻灰岩0.29/22.06[20, 23]
    L16-6无矿化藻灰岩0.46/21.49
    LM-11灰岩1.05-9.1121.47[22]
    LM-16灰岩0.52-9.2421.33
    蜂塘SZS-14灰岩0.65-8.9521.63
    SZS-21灰岩0.98-8.9921.59[22]
    SZS-23灰岩0.97-6.7623.89
    13FT-B30灰岩0.19-7.6023.03
    13FT-B33-1灰岩0.69-8.8421.75本文
    13FT-B33-2灰岩0.65-8.9521.63
    大石沟13DSG-B20灰岩0.44-8.4722.13
    13DSG-B21灰岩0.55-10.7419.79本文
    13DSG-B26灰岩0.77-9.0221.56
    注:δ18OSMOW= 1.03086×δ18OPDB+30.86[26]
    下载: 导出CSV

    表 3  湘西花垣地区铅锌矿主成矿期成矿流体的D-O同位素组成

    Table 3.  δO-δD composition of ore-forming fluid from typical lead-zinc deposits in Huayuan area, western Hu'nan

    矿区样号矿物δ18OSMOW/‰δDSMOW/‰δOfluid/‰换算温度/℃
    团结13TJ-B1褐色脉状闪锌矿/-85.504.30150
    13TJ-B2褐色脉状闪锌矿/-78.706.10150
    13TJ-B8褐色脉状闪锌矿/-85.30-4.10150
    13TJ-B11黄色脉状闪锌矿/-91.103.30150
    13TJ-B1方解石21-50.68.35150
    13TJ-B2方解石21.9-39.49.25150
    13TJ-B3方解石21.9-33.49.25150
    13TJ-B4方解石21.1-44.38.45150
    13TJ-B7方解石21.3-57.68.65150
    13TJ-B8方解石21.7-51.69.05150
    13TJ-B10斑脉状方解石21.4-50.78.75150
    13TJ-B11方解石21.8-41.89.15150
    LM-1斑脉状方解石/-230.25150
    LM-2斑脉状方解石/-401.54150
    李梅LM-3斑脉状方解石/-151.93150
    LM-4斑脉状方解石/-462.43150
    LM-5斑脉状方解石/-331.72150
    土地坪13TDP-B3粗脉状方解石17.7-55.83.89135
    13TDP-2B3粗脉状方解石17.3-48.23.49135
    蜂塘13FT-B26斑脉状方解石19.3-44.25.49135
    13DSG-B10块状方解石17.7-64.13.89135
    13DSG-B11方解石18-54.74.19135
    13DSG-B12方解石17.1-48.13.29135
    大石沟13DSG-B13方解石16.3-65.82.49135
    13DSG-B15方解石17.5-46.53.69135
    13DSG-B16方解石16.8-51.72.99135
    13DSG-B17方解石17-46.83.19135
    注:δ18OSMOW=1.03086 ×δ18OPDB + 30.86[26];方解石与流体的转换公式采用1000lnα方解石-水=2.78×106T-2-2.89[29];换算温度采用测温结果的峰值,T为绝对温度
    下载: 导出CSV

    表 4  中美MVT铅锌矿床成矿温度对比

    Table 4.  Metallogenic temperatures contrast between Chinese and American MVT lead-zinc deposits

    国家矿床(区)主矿物Th/℃资料来源



    花垣闪锌矿
    方解石
    120~160
    90~180
    [1]
    茶田闪锌矿
    方解石
    96~170
    92~169
    闪锌矿113~219
    打狗洞方解石92~152
    石英85~195
    闪锌矿108~148
    董家河方解石128~164
    石英100~343
    闪锌矿106~129
    唐家寨石英100~220
    方解石115~139



    维伯纳姆和老铅带闪锌矿90~120
    阿肯色北部闪锌矿95~170
    三州交界地区闪锌矿80~120
    上密西西比河谷地区闪锌矿75~160, 个别达220[35-37]
    田纳西中部闪锌矿90~150
    田纳西东部闪锌矿70~170
    肯塔基中部闪锌矿70~130
    下载: 导出CSV
  • [1]

    周云, 段其发, 唐菊兴, 等.湘西地区铅锌矿的大范围低温流体成矿作用——流体包裹体研究[J].地质与勘探, 2014, 50(3):515-532. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201403012.htm

    [2]

    刘文周, 徐新煌.论滇川黔铅锌成矿带矿床与构造的关系[J].成都理工学院学报, 1996, 23(l):71-77. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG601.009.htm

    [3]

    芮宗瑶, 叶锦华, 张立生, 等.扬子克拉通周边及其隆起边缘的铅锌矿床[J].中国地质, 2004, 31(4):337-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200404000.htm

    [4]

    张长青, 毛景文, 吴锁平, 等.川滇黔地区MVT铅锌矿床分布、特征及成因[J].矿床地质, 2005, 24(3):317-324. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200503012.htm

    [5]

    王奖臻, 李朝阳, 李泽琴, 等.川滇黔地区密西西比河谷型铅锌矿床成矿地质背景及成因探讨[J].地质地球化学, 2001, 29(2):41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200102006.htm

    [6]

    王奖臻, 李朝阳, 李泽琴, 等.川、滇、黔交界地区密西西比河谷型铅锌矿床与美国同类矿床的对比[J].矿物岩石地球化学通报, 2002, 21(2):127-132. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200202011.htm

    [7]

    汤朝阳, 邓峰, 李堃, 等.湘西-黔东地区寒武系都匀阶清虚洞期岩相古地理与铅锌成矿关系研究[J].地质与勘探, 2013, 49(l):19-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201301004.htm

    [8]

    曾勇, 李成君.湘西董家河铅锌矿地质特征及成矿物质来源探讨[J].华南地质与矿产, 2007, 23(3):24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200703004.htm

    [9]

    林方成.扬子地台西缘大渡河谷超大型层状铅锌矿床地质地球化学特征及成因[J].地质学报, 2005, 79(4):540-556. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504017.htm

    [10]

    刘文均, 郑荣才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质, 2000, 19(2):173-181. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201705014.htm

    [11]

    杨绍祥, 劳可通.湘西北铅锌矿床的地质特征及找矿标志[J].地质通报, 2007, 26(7):899-908. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200707147&journal_id=gbc

    [12]

    周家喜, 黄智龙, 周国富, 等.黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学[J].大地构造与成矿学, 2012, 36(1):93-101. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201201016.htm

    [13]

    毛德明.贵州赫章天桥铅锌矿床围岩的氧-碳同位素研究[J].贵州工业大学学报(自然科学版), 2000, 29(2):8-11. http://www.cnki.com.cn/Article/CJFDTOTAL-GZGX200002001.htm

    [14]

    黄智龙, 陈进, 韩润生, 等.云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社, 2004:28-58.

    [15]

    黄智龙, 李文博, 陈进, 等.云南会泽超大型铅锌矿床C、O同位素地球化学[J].大地构造与成矿学, 2004, 28(1):53-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200401007.htm

    [16]

    Spangenberg J, Fontbote L, Sharp Z D. Carbon and oxygen isotope study of hydrothermal carbonates in the zinc lead deposits of the San Vicente district, central Peru:a quantitative modeling on mix-ing processes and CO2 degassing[J]. Chemical Geology, 1996, 133(1/4):289-315. https://www.researchgate.net/publication/271528998_Rare_earth_element_patterns_in_the_host_and_gangue_carbonates_of_the_San_Vicente_zinc-lead_deposit_Peru

    [17]

    Huang Z L, Li W B, Chen J, et al. Carbon and oxygen isotope con-straints on mantle fluid involvement in the mineralization of the Huize super-large Pb-Zn deposits, Yunnan Province, China[J]. Journal of Geochemical Exploration, 2003, 78/79:637-642. https://www.researchgate.net/publication/247864241_The_Source_of_Metals_in_the_Qilinchang_Zn-Pb_Deposit_Northeastern_Yunnan_China_Pb-Sr_Isotope_Constraints

    [18]

    Huang Z L, Li W B, Zhou MF, et al. REE and C-O isotopic geo-chemistry of calcites from the world-class Huize Pb-Zn deposits, Yunnan, China:Implications for the ore genesis[J]. Acta Geologica Sinica, 2010, 84(3):597-613. doi: 10.1111/acgs.2010.84.issue-3

    [19]

    黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社, 2000:1-288.

    [20]

    夏新阶, 舒见闻.李梅锌矿床地质特征及其成因[J].大地构造与成矿学, 1995, 19(3):197-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK503.001.htm

    [21]

    杨绍祥, 劳可通.湘西北铅锌矿床碳氢氧同位素特征及成矿环境分析[J].矿床地质, 2007, 26(3):330-340. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200703009.htm

    [22]

    蔡应雄, 杨红梅, 段瑞春, 等.湘西-黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征[J].现代地质, 2014, 28(1):29-41. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201401004.htm

    [23]

    李堃, 吴昌雄, 汤朝阳, 等.湘西黔东地区铅锌矿床C、O同位素地球化学特征及其对成矿过程的指示[J].中国地质, 2014, 41(5):1608-1619. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201405016.htm

    [24]

    钟九思, 毛昌明.湘西北密西西比河谷型铅锌矿床特征及成矿机制探讨[J].国土资源导刊, 2007, 4(6):52-56. http://www.cnki.com.cn/Article/CJFDTOTAL-GTDK200706041.htm

    [25]

    段其发, 曹亮, 曾健康, 等.湘西花垣矿集区狮子山铅锌矿床闪锌矿Rb-Sr定年及地质意义[J].地球科学-中国地质大学学报, 2014, 39(8):977-999. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408004.htm

    [26]

    Friedman I, O'Neil J R. Compilation of Stable Isotope Fraction-ation Factors of Geochemical[M]. Washington:United States Gov-ernment Printing Office, 1977:1-12.

    [27]

    Hoefs J. Stable isotope geochemistry[M]. Berlin:Spring Verlag, 1997:65-168.

    [28]

    刘家军, 何明勤, 李志明, 等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J].矿床地质, 2004, 23(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200401000.htm

    [29]

    O'Neil J R, Clayton R N, Mayeda T K. Oxygen isotope frac-tionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 1969, 51(12):5547-5558. doi: 10.1063/1.1671982

    [30]

    路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm

    [31]

    王林均, 包广萍, 崔银亮, 等.黔西北典型铅锌矿床碳-氧同位素地球化学研究[J].矿物学报, 2013, 33(4):709-712. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304044.htm

    [32]

    郑永飞.稳定同位素体系理论模型及其矿床地球化学应用[J].矿床地质, 2001, 20(1):57-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200101008.htm

    [33]

    Zheng Y F. Carbon-oxygen isotopic covariations in hydrothermal calcite during degassing of CO2:A quantitative evaluation and appli-cation to the Kushikino gold mining area in Japan[J]. Mineralium Deposita, 1990, 25:246-250. https://www.researchgate.net/publication/221953726_Geochemistry_and_stable_isotope_constraints_on_high-T_activity_from_sediment_cores_of_the_Saldanha_hydrothermal_field

    [34]

    Zheng Y F, Hoefs J. Carbon and oxygen isotopic covariations in hydrothermal calcites[J].Mineralium Deposita, 1993, 28:79-89. http://link.springer.com/content/pdf/10.1007/bf00196332.pdf

    [35]

    Appold M S, Garven G. The hydrology of ore formation in the Southeast Missouri district:numerical models of topography-driv-en fluid flow during the Ouachit a orogen[J]. Economic Geology, 1999, 94:913-936. doi: 10.2113/gsecongeo.94.6.913

    [36]

    Leach D L, Sangster D F. Mississippi Valley-type lead-zinc deposits[C]//Kirkham R V, Sinclair W D, Thorpe R I. Mineral Deposit Modeling. Geological Association of Canada. Spec. Papers., 1993, 40:289-314.

    [37]

    Leach D L, Bradley D C, Lewchuk M, et al. Mississippi Valleytype lead-zinc deposits through geological time:implications from recent age-dating research[J]. Mineralium Deposita, 2001, 36:711-740. doi: 10.1007/s001260100208

    [38]

    Leach D L, S angster D F, Kelley K D, et al. Sedement-hosted lead-zinc deposits:A global perspective[C]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. Economic Geology 100th Anniversary Volume, 2005:561-607.

  • 加载中

(4)

(4)

计量
  • 文章访问数:  928
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2016-08-22
修回日期:  2017-02-13
刊出日期:  2017-05-25

目录