鄂西长阳ZK04钻孔埃迪卡拉系陡山沱组C同位素组成特征及其地层对比意义

危凯, 刘安, 李海, 李继涛. 鄂西长阳ZK04钻孔埃迪卡拉系陡山沱组C同位素组成特征及其地层对比意义[J]. 地质通报, 2017, 36(5): 800-810.
引用本文: 危凯, 刘安, 李海, 李继涛. 鄂西长阳ZK04钻孔埃迪卡拉系陡山沱组C同位素组成特征及其地层对比意义[J]. 地质通报, 2017, 36(5): 800-810.
WEI Kai, LIU An, LI Hai, LI Jitao. Carbon isotopic composition of the Ediacaran Doushantuo Formation from ZK04 drill hole in Changyang of west Hubei Province and its significance for stratigraphic correlation[J]. Geological Bulletin of China, 2017, 36(5): 800-810.
Citation: WEI Kai, LIU An, LI Hai, LI Jitao. Carbon isotopic composition of the Ediacaran Doushantuo Formation from ZK04 drill hole in Changyang of west Hubei Province and its significance for stratigraphic correlation[J]. Geological Bulletin of China, 2017, 36(5): 800-810.

鄂西长阳ZK04钻孔埃迪卡拉系陡山沱组C同位素组成特征及其地层对比意义

  • 基金项目:
    中国地质调查局项目《中扬子古生界页岩气基础地质调查》(编号:12120100900061111)、《上扬子地块埃迪卡拉纪—早寒武世微生物岩与铅锌矿成矿关系》(编号:12120114005601)和国家科技重大专项《中扬子高演化页岩气赋存机理与富集规律研究》(编号:2016ZX05034-001-002)
详细信息
    作者简介: 危凯(1983-), 男, 博士, 助理研究员, 从事沉积地球化学研究。E-mail:kaiwei1983@163.com
  • 中图分类号: P534.31;P597+.2

Carbon isotopic composition of the Ediacaran Doushantuo Formation from ZK04 drill hole in Changyang of west Hubei Province and its significance for stratigraphic correlation

  • 对湖北长阳两河口ZK04钻孔岩心进行了详细的碳酸盐岩C、O同位素分析,识别了埃迪卡拉系陡山沱组4次明显的δ13C负偏离,分别位于陡山沱组一段、二段中上部、二段上部和三段上部至四段。其中第1、2和4次δ13C负偏离与黄陵背斜周缘的剖面能够很好地对应,具有重要的区域和全球地层对比意义。在第1次δ13C正偏离区域内并未发现明显的δ13C负偏,分析认为WANCE事件可能仅代表了峡东部分地区一次短暂的δ13C降低事件。第3次δ13C负偏离表现最显著,然而在秭归泗溪和青林口以外的其他地区未见报道,可能是由于水体较浅的区域发生了地层缺失,未能保存此次δ13C负偏离。长阳ZK04孔陡山沱组顶部的第4次δ13C负偏离表现较弱,考虑到陡山沱组四段的黑色页岩较少发育,推测长阳两河口地区在陡山沱晚期处于浅水台地或台地边缘。DOUNCE可能是地史时期最大的一次全球性C同位素负偏离事件,其与大型具刺疑源类化石群和埃迪卡拉生物群的发展演化有紧密的联系,对于全球埃迪卡拉纪统级地层对比具有重要的意义。

  • 加载中
  • 图 1  湖北长阳ZK04钻孔的地理位置和地质图

    Figure 1. 

    图 2  湖北长阳两河口ZK04钻孔埃迪卡拉系δ13C和δ18O值相关性

    Figure 2. 

    图 3  湖北长阳ZK04钻孔埃迪卡拉系δ13C和δ18O变化特征

    Figure 3. 

    图 4  峡东地区不同埃迪卡拉纪剖面C同位素组成特征对比

    Figure 4. 

    表 1  湖北长阳ZK04钻孔C、O稳定同位素和Mn/Sr值测试结果

    Table 1.  Stable carbon and oxygen isotopic data and Mn/Sr ratios of the ZK04 drilling core in Changyang, Hubei Province

    序号样品号深度/m岩性δ13CPDB/‰δ18OPDB/‰Mn/Sr
    1ZK04-1T9.5白云岩3.42-3.03
    2ZK04-2T18.3白云岩1.11-3.90
    3ZK04-3T20.8白云岩1.94-4.33
    4ZK04-3-2T23.9白云岩1.41-4.82
    5ZK04-3-2T*白云岩1.38-4.82
    6ZK04-4T25.9白云岩0.60-4.77
    7ZK04-5T27.3白云岩-2.52-3.44
    8ZK04-6T28.9白云岩0.67-2.92
    9ZK04-8T33.0白云岩-0.45-3.62
    10ZK04-8T*白云岩-0.48-3.62
    11ZK04-10T38.5白云岩1.36-2.86
    12ZK04-11T40.2白云岩-0.10-2.63
    13ZK04-12T41.7白云岩-0.15-2.530.30
    14ZK04-13T45.3白云岩1.10-3.66
    15ZK04-13T*白云岩1.11-3.75
    16ZK04-14T47.7灰岩-0.14-8.180.76
    17ZK04-15T50.5灰岩0.62-7.97
    18ZK04-15T*灰岩0.63-7.95
    19ZK04-16T52.1灰岩6.27-8.73
    20ZK04-17T54.1灰岩3.10-8.29
    21ZK04-18T56.4灰岩3.76-7.71
    22ZK04-19T58.7灰岩2.20-8.160.34
    23ZK04-19T*灰岩2.21-8.03
    24ZK04-20T60.3灰岩1.09-8.41
    25ZK04-21T64.2灰岩3.91-7.26
    26ZK04-22T66.0灰岩5.12-5.74
    27ZK04-22T*灰岩5.11-5.73
    28ZK04-23T67.3灰岩4.11-7.96
    29ZK04-24T68.8灰岩5.41-7.60
    30ZK04-25T71.6灰岩5.35-8.240.43
    31ZK04-26T74.1灰岩4.23-7.08
    32ZK04-26T*灰岩4.21-7.20
    33ZK04-27T75.6灰岩4.57-7.87
    34ZK04-28T77.6灰岩2.99-7.91
    35ZK04-29T79.5灰岩2.61-8.43
    36ZK04-29T*灰岩2.62-8.37
    37ZK04-30T81.3灰岩4.02-4.72
    38ZK04-31T86.3白云岩3.17-2.070.64
    39ZK04-32T89.0白云岩2.94-2.32
    40ZK04-33T90.2白云岩-0.44-2.56
    41ZK04-34T96.0白云岩-3.00-2.32
    42ZK04-34T*白云岩-2.99-2.28
    43ZK04-35T101.2白云岩0.30-3.07
    44ZK04-36T106.1白云岩-1.03-2.07
    45ZK04-37T127.6白云岩5.26-4.70
    46ZK04-38T133.4白云岩3.93-4.51
    47ZK04-38T*白云岩3.93-4.53
    48ZK04-39T139.6灰岩3.60-6.640.30
    49ZK04-40T142.9灰岩3.48-8.00
    50ZK04-41T143.8灰岩2.59-8.00
    51ZK04-41T*灰岩2.65-7.96
    52ZK04-42T150.3白云岩3.99-3.43
    53ZK04-43T153.8白云岩3.72-3.30
    54ZK04-44T155.4白云岩5.62-3.030.31
    55ZK04-45T161.4白云岩6.93-3.26
    56ZK04-45T*白云岩6.93-3.32
    57ZK04-46T164.9灰岩6.69-7.80
    58ZK04-47T166.8灰岩6.25-7.60
    59ZK04-48T170.5灰岩6.74-9.05
    60ZK04-48T*灰岩6.80-8.95
    61ZK04-49T172.2灰岩6.36-7.100.56
    62ZK04-50T175.9灰岩6.69-8.02
    63ZK04-51T176.8灰岩6.60-7.03
    64ZK04-52T180.0灰岩6.47-6.78
    65ZK04-52T*灰岩6.45-6.66
    66ZK04-53T181.8灰岩7.06-6.10
    67ZK04-54T182.9灰岩6.79-6.90
    68ZK04-55T185.3灰岩6.71-8.550.35
    69ZK04-56T187.7灰岩6.81-8.76
    70ZK04-57T190.6灰岩6.66-5.25
    71ZK04-58T194.3灰岩6.58-4.78
    72ZK04-59T200.4白云岩6.37-4.68
    73ZK04-60T204.5白云岩6.75-4.70
    74ZK04-61T208.1灰岩6.72-9.74
    75ZK04-62T210.6灰岩6.80-11.12
    76ZK04-62T*灰岩6.83-11.09
    77ZK04-63T213.0灰岩6.76-9.15
    78ZK04-64T214.3灰岩7.51-9.360.24
    79ZK04-65T217.4灰岩7.21-8.83
    80ZK04-66T221.5灰岩7.37-7.44
    81ZK04-67T223.3灰岩6.78-9.35
    82ZK04-68T226.9灰岩7.52-10.85
    83ZK04-69T229.9灰岩8.06-8.86
    84ZK04-70T232.4灰岩8.03-9.69
    85ZK04-70T*灰岩8.05-9.66
    86ZK04-71T236.7灰岩7.59-10.14
    87ZK04-72T238.8灰岩7.45-10.080.29
    88ZK04-73T243.5灰岩7.89-7.35
    89ZK04-74T244.8灰岩7.66-8.53
    90ZK04-75T249.5灰岩7.25-8.16
    91ZK04-76T252.8灰岩7.73-8.98
    92ZK04-77T255.0灰岩7.42-11.22
    93ZK04-78T256.5灰岩7.31-11.550.16
    94ZK04-78T*灰岩7.33-11.53
    95ZK04-79T262.6灰岩7.08-11.55
    96ZK04-80T267.8灰岩6.46-5.55
    97ZK04-81T270.4白云岩6.00-6.73
    98ZK04-82T274.3白云岩5.40-5.27
    99ZK04-82T*白云岩5.39-5.350.38
    100ZK04-83T281.8灰岩0.92-9.30
    101ZK04-84T283.5白云岩0.91-3.991.64
    102ZK04-85T284.7白云岩0.07-4.41
    103ZK04-86T285.7白云岩1.06-4.05
    104ZK04-87T286.9白云岩1.29-3.92
    105ZK04-87T*白云岩1.33-3.88
    106ZK04-88T287.2白云岩2.61-2.242.78
    107ZK04-89T288.0白云岩1.67-5.81
    108ZK04-89T*白云岩1.68-5.81
    109ZK04-90T288.3白云岩1.56-2.29
    110ZK04-91T289.0白云岩1.78-1.73
    111ZK04-92T289.8白云岩2.95-1.63
    112ZK04-93T290.5白云岩3.02-2.67
    113ZK04-94T291.0白云岩-2.67-8.85
    114ZK04-95T291.6白云岩-1.95-9.03
    注:*为重复测试样
    下载: 导出CSV
  • [1]

    Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclima-tology, Palaeoecology, 2007, 254:7-61. doi: 10.1016/j.palaeo.2007.03.025

    [2]

    Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the Neo-proterozoicDoushantuo Formation, China[J]. Science, 2005, 308:95-98. doi: 10.1126/science.1107765

    [3]

    Willman S, Moczydłowska M. Ediacaranacritarch biota from the Giles-1 drillhole, Officer Basin, Australia, and its potential forbio-stratigraphiccorrelation[J]. Precambrian Research, 2008, 162:498-530. doi: 10.1016/j.precamres.2007.10.010

    [4]

    Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isoto-pic composition of seawater:Stratigraphic and biogeochemical impli-cations[J]. Precambrian Research, 1995, 73:27-49. doi: 10.1016/0301-9268(94)00070-8

    [5]

    Knoll A H. Learning to tell Neoproterozoictime[J]. Precambrian Re-search, 2000, 100:3-20. doi: 10.1016/S0301-9268(99)00067-4

    [6]

    Zhu M Y, Lu M, Zhang J M, et al. Carbon isotope chemostratigra-phy and sedimentary facies evolution of the EdiacaranDoushantuo Formation in western Hubei, South China[J]. Precambrian Re-search, 2003, 225:7-28. http://www.academia.edu/17380682/Carbon_isotope_chemostratigraphy_and_sedimentary_facies_evolution_of_the_Ediacaran_Doushantuo_Formation_in_western_Hubei_South_China

    [7]

    Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeogra-phy of the EdiacaranDoushantuo Formation (ca. 635-551Ma) in South China[J]. Gondwana Research, 2011, 19:831-849. doi: 10.1016/j.gr.2011.01.006

    [8]

    刘鹏举, 尹崇玉, 陈寿铭, 等.华南埃迪卡拉纪陡山沱期管状微体化石分布、生物属性及其地层学意义[J].古生物学报, 2010, 49(3):308-324. http://www.cnki.com.cn/Article/CJFDTOTAL-GSWX201003002.htm

    [9]

    Zhu M Y, Lu M, Zhang J M, et al. Carbon isotope chemostratigra-phy and sedimentary facies evolution of the EdiacaranDoushantuo Formation in western Hubei, South China[J]. Precambrian Re-search, 2013, 225:7-28. doi: 10.1016/j.precamres.2011.07.019

    [10]

    陈寿铭, 尹崇玉, 刘鹏举, 等.湖北峡东地区牛坪剖面埃迪卡拉系C同位素组成及地质意义[J].世界地质, 2013, 32(4):641-651. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201304001.htm

    [11]

    陈孝红, 周鹏, 张保民, 等.峡东埃迪卡拉系陡山沱组稳定C同位素记录及其年代地层意义[J].中国地质, 2015, 42(1):207-223. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201501016.htm

    [12]

    刘宝珺, 许效松, 潘杏南, 等.中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社, 1993:120-127.

    [13]

    张汉金, 胡正祥, 颜代蓉, 等.鄂西陡山沱村期岩相古地理与含磷岩系沉积规律[J].地层学杂志, 2013, 37(4):521-526. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201304015.htm

    [14]

    Sawaki Y, Ohno T, Tahata M, et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorg-es area, South China[J]. Precambrian Research, 2010, 176:46-64. doi: 10.1016/j.precamres.2009.10.006

    [15]

    Derry L A, Brasier M D, Corfield R M, et al. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton:A paleoenvi-ronmental record during the'Cambrian explosion'[J]. Earth and Planetary Science Letters, 1994, 128:671-681. doi: 10.1016/0012-821X(94)90178-3

    [16]

    Kaufman A J, Knoll A H. Neoproterozoic variations in the C-iso-topic composition of seawater-stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/4):27-49. http://www.oalib.com/references/19238429

    [17]

    Zhou C M, Xiao S H. Ediacaran δ13C chemostratigraphy of South China[J].Chemical Geology, 2007, 237(1/2):89-108.

    [18]

    Halverson G P, Hoffman P F, Schrag D P, et al. Toward a Neopro-terozoic composite carbon-isotope record[J]. GSA Bulletin, 2005, 117:1181-1207. doi: 10.1130/B25630.1

    [19]

    Hoffman P F, Schrag D P. The snowball earth hypothesis:testing the limits of global change[J]. Terra Nova, 2002, 14:129-155. doi: 10.1046/j.1365-3121.2002.00408.x

    [20]

    Knoll A H, Bambach R K, Canfield D E, et al. Comparative earth history and late Permian mass extinction[J]. Science, 1996, 273:452-457. doi: 10.1126/science.273.5274.452

    [21]

    Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap car-bonates and isotopic excursions a record of gas hydrate destabiliza-tion following earth's coldest intervals?[J]. Geology, 2001, 29:443-446. doi: 10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2

    [22]

    Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stratigraphy, sed-imentary structures, and textures of the late Neoproterozoic-Doushantuo cap carbonate in south China[J]. J. Sediment Res., 2006, 76:978-995. doi: 10.2110/jsr.2006.086

    [23]

    Shields G A. Neoproterozoic cap carbonates:a critical appraisal of existing models and the plumeworld hypothesis[J]. Terra Nova, 2005, 17:299-310. doi: 10.1111/ter.2005.17.issue-4

    [24]

    王家生, 王舟, 胡军, 等.华南新元古代"盖帽"碳酸盐岩中甲烷渗漏事件的综合识别特征[J].地球科学-中国地质大学学报, 2012, 37(增2):14-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2009.htm

    [25]

    Jiang G Q, Kennedy M J, Christie-Blick N. Stable isotopic evi-dence for methane seeps in Neoproterozoic post glacial cap carbon-ates[J]. Nature, 2003, 426(6968):822-826. doi: 10.1038/nature02201

    [26]

    Wang J S, Jiang G Q, Xiao S H, et al. Carbon isotope evidence for widespread methane seeps in the ca. 635Ma Doushantuo cap car-bonate in south China[J]. Geology, 2008, 36(5):374-350. https://www.researchgate.net/publication/237146040_Carbon_isotope_evidence_for_widespread_methane_seeps_in_the_ca_635_Ma_Doushantuo_cap_carbonate_in_south_China

    [27]

    Liu P J, Chen S M, Zhu M Y, et al. High-resolution biostrati-graphic and chemostratigraphic data from the Chenjiayuanzi sec-tion of the Doushantuo Formation in the Yangtze Gorges area, South China:Implication for subdivision and global correlation of the EdiacaranSystem[J]. Precambrian Research, 2014, 249:199-214. doi: 10.1016/j.precamres.2014.05.014

    [28]

    Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261:303-320. doi: 10.1016/j.epsl.2007.07.009

    [29]

    Chu X L, Zang Q R, Zhang T G, et al.Sulfur and car-bon isoto-pic variations in Neoproterozoic sedimentary rocks from southern China[J]. Progress in Natural Science, 2003, 13(11):875-880. doi: 10.1080/10020070312331344580

    [30]

    Liu P J, Xiao S H, Yin C Y, et al. Silicified tubular microfossils from the upper Doushantuo Formation(Ediacaran) in the Yangtze Gorges area, South China[J]. Journal of Palaeontology, 2009, 83(4):630-633. doi: 10.1666/08-034R1.1

    [31]

    Liu P J, Yin C Y, Chen S M, et al. The biostratigraphic succession of acanthomorphicacritarchs of the Ediacaran Doushantuo Forma-tion in the Yangtze Gorges area, South China and its biostratigraph-ic correlation with Australia[J]. Precambrian Research, 2013, 225:29-43. doi: 10.1016/j.precamres.2011.07.009

    [32]

    McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and bio-logical evolution in the Ediacaran Doushantuo Formation[J]. Pro-ceedings of the National Academy of Sciences of the United States of America, 2008, 105(9):3197-3202. doi: 10.1073/pnas.0708336105

    [33]

    Le Guerroué E, Allen P A, Cozzi A. Chemostratigraphic and sedi-mentological framework of the largest negative carbon isotopic ex-cursion in Earth history:The NeoproterozoicShuram Formation (Nafun Group, Oman)[J]. Precambrian Research, 2006, 146:68-92. doi: 10.1016/j.precamres.2006.01.007

    [34]

    Calver C R. Isotope stratigraphy of the Ediacarian (Neoproterozoic Ⅲ) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification[J]. Precambrian Research, 2000, 100:121-150. doi: 10.1016/S0301-9268(99)00072-8

    [35]

    Kaufman A J, Corsetti F A, Varni M A.The effect of rising atomo-spheric oxygen carbon and sulfur isotope anomalies in the Neopro-terozoic Johnnie Formation, DealthVarrley, USA[J]. Chemical Ge-ology, 2007, 237:47-63. doi: 10.1016/j.chemgeo.2006.06.023

    [36]

    Prave A R, Strachan R A, FallickA E. Global C cycle perturbations recorded in marbles:a record of Neoproterozoic Earth history with-in the Dalradian succession of the Shetland Islands, Scotland[J]. Journal of the Geological Society. 2009, 166:129-135. doi: 10.1144/0016-76492007-126

    [37]

    刘鹏举, 尹崇玉, 陈寿铭, 等.华南峡东地区埃迪卡拉(震旦)纪年代地层划分初探[J].地质学报, 2012, 86(6):849-866. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201206002.htm

    [38]

    Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Edia-caranOcean[J]. Nature, 2006, 444:744-747 doi: 10.1038/nature05345

    [39]

    McFadden K A, Xiao Shuhai, Zhou Chuanming. Quantitativeeval-uation of the biostratigraphic distribution of acanthomorphicacri-tarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China[J]. Precambrian Research, 2009, 173:170-190. doi: 10.1016/j.precamres.2009.03.009

    [40]

    Wallace M W, Gostin V A, Keays R R. Discovery of the Acraman impact ejecta blanket in the Officer Basin and its stratigraphic signif-icance[J]. Australian Journal of Earth Sciences, 1989, 36:585-587. doi: 10.1080/08120098908729511

    [41]

    Gostin VA, Keays R R, Wallace M W. Iridium anomaly from the Acraman impact ejectahorizon:impacts can produce sedimentary iridium peaks[J]. Nature, 1989, 340:542-544. doi: 10.1038/340542a0

    [42]

    Hill A C. The EdiacaranAcraman impact event:Did it affect the-long-term carbon cycle?[C]//Goldschmidt Conference Abstracts, 2006:250.

    [43]

    McKirdy D M, Webster L J, Arouri K R, et al. Contrasting sterane signatures in Neoproterozoic marine rocks of Australia before and after the Acraman asteroid impact[J]. Organic Geochemistry, 2006, 37:189-207. doi: 10.1016/j.orggeochem.2005.09.005

    [44]

    Hallmann C, Grey K, Webster L J, et al. Molecular signature of the NeoproterozoicAcraman impact event[J]. Organic Geochemistry, 2010, 41:111-115. doi: 10.1016/j.orggeochem.2009.11.007

    [45]

    Grey K, Walter M R, Calver C.R. Neoproterozoic biotic diversifi-cation:snowball Earth or aftermath of the Acraman impact?[J]. Ge-ology, 2003, 31:459-462. https://www.researchgate.net/publication/249520912_Neoproterozoic_biotic_diversification_Snowball_Earth_or_aftermath_of_the_Acraman_impact

    [46]

    Grey K. Ediacaran Palynology of Australia[J]. Memoirs of the Aus-tralasian Association of Palaeontologists, 2005, 31:439. https://www.researchgate.net/publication/284701396_Ediacaran_palynology_of_Australia

    [47]

    Willman S, Moczydłowska M, Grey K. Neoproterozoic (Ediacaran) diversification of acritarchsa new record from the Murnaroo 1 drill-core, eastern Officer Basin[J]. Australia:Review of Palaeobotany and Palynology, 2006, 139:17-39. doi: 10.1016/j.revpalbo.2005.07.014

    [48]

    Williams G, Gostin V, Wallace M. The Acraman impact event, South Australia:recognition, magnitude and implications for the Late Vendianenvironment[J]. Geological Society of Australia Ab-stracts, 2004, 73:247. https://www.researchgate.net/publication/222953003_Molecular_signature_of_the_Neoproterozoic_Acraman_impact_event

    [49]

    Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precam-brian Research, 2000, 100:371-433. doi: 10.1016/S0301-9268(99)00082-0

    [50]

    Williams G E, Wallace M W. The Acraman asteroid impact, South Australia:magnitude and implications for the late Vendianenviron-ment[J]. Journal of the Geological Society, London, 2003, 160:545-554. doi: 10.1144/0016-764902-142

    [51]

    Calver C R, Black L P, Everard J L, et al. U-Pb zircon age con-straints on late Neoproterozoic glaciations in Tasmania[J]. Geology, 2004, 32:893-896. doi: 10.1130/G20713.1

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1210
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2015-10-31
修回日期:  2016-08-12
刊出日期:  2017-05-25

目录