Age and sources of the ore-forming material for the Qibaoshan Cu-polymetallic deposit in Hu'nan Province:Evidence from quartz vein Rb-Sr isotopic dating and S-Pb iso-topes
-
摘要:
湘东北七宝山铜多金属矿床位于钦杭成矿带西段,是湘东北规模最大的铜多金属矿床。对七宝山矿床含矿石英脉中的石英矿物进行Rb-Sr同位素年龄测定,获得的Rb-Sr等时线年龄为153.4±2.0Ma(MSWD=1.8),87Sr/86Sr初始值为0.71849±0.00026,与区内石英斑岩形成年龄(153~155Ma)相同,说明七宝山铜多金属矿床成因与石英斑岩体密不可分,成岩成矿年龄均在燕山期。为分析七宝山矿床成矿物质来源,对矿区内的黄铁矿进行了S、Pb同位素分析,矿石δ34S为3.24‰~4.84‰,平均值为4.198‰;岩体δ34S为2.22‰~3.86‰,平均值为2.805‰。δ34S值总体变化较小,岩体δ34S值较矿石小,更趋近于0值,说明岩体中硫极可能源于地幔;而矿床中硫来源于主体地幔硫和少量地壳硫混熔的混合硫源。Pb同位素变化范围也较小,矿石206Pb/204Pb值变化范围为18.315~18.396,平均值为18.359;207Pb/204Pb值变化范围为15.629~15.737,平均值为15.675;208Pb/204Pb值变化范围为38.376~38.856,平均值为38.609。矿化岩体数值与之相似,结果显示,七宝山铜多金属矿床的Pb同位素组成具有下地壳富钍(铅)贫铀(铅)的特点。据此提出,矿床的成矿物质主要来自与含矿斑岩体有联系的深部岩浆分异演化而析出的含矿气-液流体。含矿斑岩体定位-结晶时,通过对周围受热地下水的对流循环作用,可以从围岩中萃取少量成矿物质加入成矿作用。
Abstract:The Qibaoshan Cu-polymetallic deposit, located in the west section of the Qinzhou-Hangzhou metallogenic belt, is the largest Cu-polymetallic deposit in northeastern Hu'nan Province.However, the data of the deposit age are very insufficient.Based on quartz minerals Rb-Sr isotopic dating of the Qibaoshan deposit, the authors tried to obtain the age.The results show that the Rb-Sr isochron age is 153.4±2.0Ma (MSWD=1.8), initial 87Sr/86Sr=0.71849±0.00026, nearly identical with the quartz porphyry (153Ma to 155Ma) in the ore district in age, which suggests that the genesis of the Qibaoshan deposit was closely related to the quartz porphy-ry.The diagenesis and mineralization were both in the Yanshan period.The authors analyzed S, Pb isotope data of the pyrite to iden-tify the mineral sources of the Qibaoshan Cu-polymetallic deposit and obtained the following data:δ34S=3.24‰~4.84‰ for the ore, with an average of 4.198‰; δ34S=2.22‰~3.86‰ for the rock, with an average of 2.805‰.The δ34S values change overall in a small range, and the δ34S values of the rock change even in a smaller range, more close to the value of 0, which suggests that the sul-fur in the rock was most possibly derived from the mantle; and the sulfur in the ore came from the main mantle mixed with a small amount of crustal sulfur.The changes of lead isotopes are also in small ranges:206Pb/204Pb change in the range of 18.315~18.396 for the ore, with an average of 18.359;207Pb/204Pb change in the range of 15.629~15.737, with an average of 15.675;208Pb/204Pb change in the range of 38.376~38.856, with an average of 38.609.The values for the rock change in a similar range.These data show that lead isotope composition of the Qibaoshan Cu-polymetallic deposit has a lower crust (thorium-rich and uranium-depleted) characteris-tics.A comprehensive analysis of the Sr-S-Pb isotopic system of the Qibaoshan deposit indicates that the ore-forming material was derived from the ore gas-liquid fluid, resulting from the deep magma evolution and differentiation in the same evolution process as the quartz porphyry.At the same time, the host rock might have extracted a small amount of minerals from the wall rock to take part in the mineralization process through the circulating convection effect of heating groundwater, resulting in quartz porphyry intrusion and crystallization.
-
-
图 4 七宝山铜多金属矿床Pb同位素模式图(底图据参考文献[43])
Figure 4.
表 1 七宝山铜多金属矿床含矿石英脉中的石英矿物Rb-Sr同位素测定结果
Table 1. Rb-Sr isotopic data of fluid inclusions in quartz mineral of the Qibaoshan Cu-polymetallic deposit
样号 样品名称 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr 2σ (87Sr/86Sr)i QB22-1 石英 1.335 0.4996 7.724 0.73554 0.00020 0.71863 QB22-2 石英 0.622 0.3968 4.524 0.72829 0.00006 0.71839 QB22-3 石英 1.004 0.4501 6.450 0.73254 0.00018 0.71842 QB22-4 石英 1.143 0.3416 9.674 0.73945 0.00010 0.71827 QB22-5 石英 2.408 0.4854 14.360 0.74981 0.00016 0.71837 表 2 七宝山铜多金属矿床硫化物的S同位素组成
Table 2. Surfur isotopic composition of pyrite from the Qibaoshan Cu-polymetallic deposit
编号 样品描述 采样位置 分析矿物 δ34SCDT/‰ QB2 块状黄铁矿矿石 老虎口矿段40m中段之33m分段13线 黄铁矿 4.50 QB4 块状黄铁矿磁铁矿矿石 老虎口矿段40m中段之33m分段93线 黄铁矿 4.11 QB6 块状黄铁矿矿石 老虎口矿段40m中段之33m分段7线 黄铁矿 4.45 QB6 块状黄铁矿矿石 老虎口矿段40m中段之33m分段7线 黄铁矿 4.68 QB8 块状桁粒黄铁矿矿石 老虎口矿段40m中段5线 黄铁矿 4.29 QB9 块状细粒黄铁矿矿石 老虎口矿段40m中段5线 黄铁矿 4.84 QB12 含铜磁铁矿矿石 鸡公湾矿段80m中段12线 黄铁矿 3.24 QB19 含铜黄铁矿矿石 大七宝山矿段146m矿段28线 黄铁矿 3.47 QB1 黄铁矿化石英斑岩 老虎口矿段40m中段之33m分段13线 黄铁矿 2.84 QB17 细脉侵染状黄铁矿化石英斑岩 大七宝山矿段80m矿段26线 黄铁矿 3.86 QB20 闪锌矿化石英斑岩 大七宝山矿段146m矿段28线 黄铁矿 2.22 QB20 闪锌矿化石英斑岩 大七宝山矿段146m矿段28线 黄铁矿 2.30 注:主量元素含量单位为%,微量、稀土元素为10-6 表 3 七宝山铜多金属矿床硫化物的Pb同位素组成
Table 3. Lead isotopic composition of pyrite from the Qibaoshan Cu-polymetallic deposit
样品类型 分析矿物 分析结果 样号 同位素比值 表面年龄/Ma φ值 μ值 Th/U 208Pb/(206Pb+207Pb) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb QB2 黄铁矿 18.384±0.007 15.689±0.007 38.509±0.015 295 0.594 9.64 3.79 1.1302 QB4 黄铁矿 18.315±0.002 15.661±0.002 38.376±0.005 310 0.596 9.59 3.77 1.1295 QB6 矿石 黄铁矿 18.384±0.002 15.737±0.003 38.856±0.007 351 0.600 9.74 3.95 1.1388 QB8 黄铁矿 18.326±0.006 15.665±0.004 38.632±0.015 307 0.596 9.6 3.87 1.1365 QB12 黄铁矿 18.350±0.001 15.629±0.001 38.577±0.004 247 0.590 9.53 3.83 1.1353 QB19 黄铁矿 18.396±0.003 15.666±0.003 38.705±0.008 258 0.591 9.6 3.87 1.1363 QB1 石 黄铁矿 18.390±0.003 15.711±0.001 38.571±0.006 316 0.596 9.69 3.82 1.1311 QB17 英 黄铁矿 18.318±0.004 15.652±0.003 38.569±0.01 297 0.595 9.58 3.85 1.1354 QB20 斑 黄铁矿 18.412±0.006 15.717±0.006 38.734±0.015 308 0.596 9.69 3.88 1.1349 QB20 岩 黄铁矿 18.373±0.007 15.707±0.006 38.728±0.016 324 0.597 9.68 3.89 1.1364 表 4 钦杭结合带主要斑岩相关铜矿床及其成岩成矿年龄
Table 4. Porphyry-related copper deposits and their ages of diagenesis and mineralization in QHSZ, southern China
序号 矿床名称 矿石种类 侵人体类型 侵人体年龄 成矿年龄 资料来源 测试方法 年龄/Ma 测试方法 年龄/Ma 1 德兴 Cu-Au-Mo 花岗闪长斑岩 锆石U-Pb 171±3 辉钼矿Re-Os 170.4±1.8 [30-31] 2 永平 Cu-W-Mo 石英斑岩 锆石U-Pb 160±2.3
135±7.4辉钼矿Re-Os 156.7±2.8
155.7±3.6[32] [33] 3 村前 Cu多金属 花岗斑岩 锆石U-Pb 169±1.1 [34] 4 铜山岭 Cu多金属 花岗闪长斑岩 SHRIMP锆石U-Pb 149±4 [35] 5 宝山 Cu-Mo-W 花岗闪长斑岩 锆石U-Pb 173±1.9 黄铁矿Rb-Sr 174±7 [4, 36] 6 水口山 Cu多金属 花岗闪长斑岩 锆石U-Pb 172.3±1.6 [4] 7 七宝山 Cu多金属 石英斑岩 锆石U-Pb 155~153 石英Rb-Sr 153.4±2.0 [23], 本文 8 圆珠顶 Cu-Mo 花岗斑岩 SHRIMP锆石U-Pb 154±2
153.4±1.6辉钼矿Re-Os 155±5 [37-38] -
[1] 杨明桂, 黄水保, 楼法生, 等.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质, 2009, 36(3):528-543. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903006.htm
[2] 毛景文, 谢桂青, 郭春丽, 等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报, 2008, 14(4):510-526. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
[3] 毛景文, 陈懋弘, 袁顺达, 等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报, 2011, 85(5):636-658. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm
[4] 王岳军, 范蔚茗, 郭峰, 等.湘东南中生代花岗闪长岩锆石U-Pb法定年及其成因指示[J].中国科学(D辑), 2001, 31(9):745-751. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200109005.htm
[5] 陆玉梅, 殷浩然, 沈瑞锦.七宝山多金属矿床成因模式[J].矿床地质, 1984, 3(4):53-60. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198404006.htm
[6] 沈瑞锦, 陆玉梅. 湖南七宝山多金属矿床成因模式[C]//钨家达. 湖南地学新进展. 长沙: 湖南科学技术出版社, 1996: 29-36.
[7] 胡祥昭, 彭恩生, 孙振家.湘东北七宝山铜多金属矿床地质特征及成因探讨[J].大地构造与成矿学, 2000, 24(4):365-370. http://cdmd.cnki.com.cn/Article/CDMD-10533-2002080803.htm
[8] 胡祥昭, 肖宪国, 杨中宝.七宝山花岗斑岩的地质地球化学特征[J].中南工业大学学报, 2002, 33(6):551-554. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200206001.htm
[9] 胡俊良, 徐德明, 张鲲.湖南七宝山石英斑岩地球化学特征及其与成矿的关系[J].华南地质与矿产, 2012, 28(4):298-306. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201204002.htm
[10] 刘姤群, 金维群, 张录秀, 等.湘东北斑岩型和热液脉型铜矿成矿物质来源探讨[J].华南地质与矿产, 2001, 17(1):40-47. http://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200101005.htm
[11] 李华芹, 陈富文, 蔡红.新疆西准噶尔地区不同类型金矿床RbSr同位素年代研究[J].地质学报, 2000, 74(2):181-192. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200002008.htm
[12] 李华芹, 王登红, 陈富文, 等.湖南雪峰山地区铲子坪和大坪金矿成矿作用年代学研究[J].地质学报, 2008, 82(7):900-905. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807007.htm
[13] 蔡明海, 韩凤彬, 何龙清, 等.湘南新田岭白钨矿床He, Ar同位素特征及Rb-Sr测年[J].地球学报, 2008, 29(2):167-173. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200802007.htm
[14] 付建明, 李华芹, 马丽艳, 等.粤北东昌市和尚田钨锡多金属矿成矿时代及其地质意义[J].地质学报, 2013, 87(9):1349-1358. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309012.htm
[15] 蔺志永, 王登红, 张长青.四川宁南跑马铅锌矿床的成矿时代及其地质意义[J].中国地质, 2010, 37(2):488-494. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002024.htm
[16] Faure G. Principle of Isotope Geology(2nd Edition)[M]. New York:John Wiley & Sons, 1986:183-199.
[17] 胡俊良, 徐德明, 张鲲.湖南七宝山矿床石英斑岩锆石U-Pb定年及Hf同位素地球化学[J].矿床地质, 2014, 33(增刊):201-202. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1103.htm
[18] 李华芹, 刘家齐, 魏琳.热液矿床流体包裹体年代学研究及其地质应用[M].北京:地质出版社, 1993:1-27.
[19] 李华芹.新疆北部有色金属矿床成矿作用年代学[M].北京:地质出版社, 1998.
[20] 蔡应雄, 杨红梅, 段瑞春, 等.湘西-黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征[J].现代地质, 2014, 28(1):29-41. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201401004.htm
[21] Qiu X F, Yang H M, Lu S S, et al. Geochronology and geochemis-try of Grenville-aged(1063±16Ma) metabasalts in the Shennongjia district, Yangtze block:implications for tectonic evolution of the South China Craton[J]. International Geology Review, 2015, 57:76-96. doi: 10.1080/00206814.2014.991949
[22] Ludwig K R. IsoplotEx v. 2.6[M]. Berkeley Geochronological Center Spec Publ. LA. 1999.
[23] 胡俊良, 徐德明, 张鲲, 等.湖南七宝山铜多金属矿床石英斑岩时代与成因:锆石U-Pb定年及Hf同位素与稀土元素证据[J].大地构造与成矿学, 2016, 40(6):1196-1211. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606007.htm
[24] Norman D Z, Lands G P. Source of mineralizing components in hydrothermal ore fluids as evidenced by 87Sr/86Sr and stable isotope data from the Pasto Bueno Deposit, Peru[J]. Economical Geology, 1983, 78:451-456. doi: 10.2113/gsecongeo.78.3.451
[25] Rossman G R, Weis D, Wasserburg G J. Rb, Sr, Nd and Sm con-centrations in quartz[J]. Geochimica et Cosmochimica Acta, 1987, 51:2325-2329. doi: 10.1016/0016-7037(87)90286-9
[26] Changkakoti A, Gray J, Krstic D, et al. Determimations of radio-genic isotopes (Rb/Sr, Sm/Nd, and Pb/Pb) in fluid inclusion wa-ters:An example from the Bluebell Pb-Zn deposit, British Colum-bia, Canada[J]. Geochimica et Cosmochimica Acta, 1988, 52:961-967. doi: 10.1016/0016-7037(88)90251-7
[27] 张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社, 1985:152-185.
[28] 郑永飞, 陈江峰.稳定同位素地球化学[M].北京:科学出版社, 2000:143-245.
[29] 张长青, 李厚民, 代军治, 等.铅锌矿床中矿石铅同位素研究[J].矿床地质, 2006, 25(增刊):213-216. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200611003057.htm
[30] 王强, 赵振华, 简平, 等.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学[J].岩石学报, 2004, 20(2):315-324. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402011.htm
[31] Lu J J, Hua R M, Yao C L. Re-Os age for molybdenite form the Dexing porphyry Cu-Au deposit in Jiangxi province, China[J]. Geochimica et Cosmochimica Acta, 2005, 69(Suppl. A):882. https://www.researchgate.net/publication/270455478_Multifractal_distribution_of_geochemical_elements_in_Dexing_porphyry_copper_deposit_Jiangxi_Province_China
[32] 丁昕, 蒋少涌, 倪培, 等.江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学[J].高校地质学报, 2005, 11(3):383-389. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503009.htm
[33] 李晓峰, Yasushi W, 华仁民, 等.华南地区中生代Cu-(Mo)-WSn矿床成矿作用于洋岭/转换断层俯冲[J].地质学报, 2008, 82(5):625-640. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200805007.htm
[34] 王强, 孙燕, 张雪辉, 等.江西省村前铜多金属矿床斜长花岗斑岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].中国地质, 2012, 39(5):1143-1150. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201205002.htm
[35] 魏道芳, 鲍征宇, 付建明.湖南铜山岭花岗岩体的地球化学特征及锆石SHRIMP定年[J].大地构造与成矿学, 2007, 31(4):482-489. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200704014.htm
[36] 姚军明, 华仁民, 林锦富.湘南宝山矿床REE、Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年[J].地质学报, 2006, 80(7):1045-1054. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200607010.htm
[37] 陈富文, 李华芹, 王登红, 等.粤西圆珠顶斑岩型铜钼矿床成矿地质特征及成岩成矿作用年代学研究[J].地质学报, 2012, 86(8):1298-1305. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201208013.htm
[38] 陈懋弘, 李忠阳, 李菁, 等.初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J].地学前缘, 2015, 22(2):41-53. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201502005.htm
[39] 侯明兰, 蒋少涌, 姜耀辉, 等.胶东蓬莱金城矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究[J].岩石学报, 2006, 22(10):2525-2533. doi: 10.3969/j.issn.1000-0569.2006.10.013
[40] 路远发. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200405003.htm
[41] 孙省利. 西秦岭泥盆系西城矿化集中区烃碱流体成矿系列研究[D]. 成都理工大学博士学位论文, 2001: 43-44.
[42] 刘姤群, 杨世义, 张秀兰, 等.粤北大宝山多金属矿床成因的初步探讨[J].地质学报, 1985, 61(1):47-61. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198501005.htm
[43] Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectono-physics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4
① 中国地质调查局资源评价部等. 钦杭成矿带重要矿产勘查部署方案. 2010.
-