德国拉梅尔斯贝格铜-锌-铅-钡矿床研究进展

康欢, 江思宏, 韩宁, 陈春良. 德国拉梅尔斯贝格铜-锌-铅-钡矿床研究进展[J]. 地质通报, 2017, 36(8): 1483-1492.
引用本文: 康欢, 江思宏, 韩宁, 陈春良. 德国拉梅尔斯贝格铜-锌-铅-钡矿床研究进展[J]. 地质通报, 2017, 36(8): 1483-1492.
KANG Huan, JIANG Sihong, HAN Ning, CHEN Chunliang. Research progress of the Rammelsberg Cu-Zn-Pb-Ba deposit, Germany[J]. Geological Bulletin of China, 2017, 36(8): 1483-1492.
Citation: KANG Huan, JIANG Sihong, HAN Ning, CHEN Chunliang. Research progress of the Rammelsberg Cu-Zn-Pb-Ba deposit, Germany[J]. Geological Bulletin of China, 2017, 36(8): 1483-1492.

德国拉梅尔斯贝格铜-锌-铅-钡矿床研究进展

  • 基金项目:
    中国地质调查局项目《中亚及邻区铜镍铀资源潜力评价与应用示范》(编号:121201103000150006)和《澳洲-印度克拉通重要矿床地质背景与成矿规律研究》(编号:1212011120325)
详细信息
    作者简介: 康欢(1988-), 男, 在读博士生, 从事成矿规律研究。E-mail:181kanghuan@163.com
    通讯作者: 江思宏(1968-), 男, 研究员, 博士生导师, 从事金属矿床成矿规律研究。E-mail:jiangsihong1@163.com
  • 中图分类号: P618.2

Research progress of the Rammelsberg Cu-Zn-Pb-Ba deposit, Germany

More Information
  • 拉梅尔斯贝格矿床是中欧华力西期最重要的SHMS(以沉积岩为容矿围岩的块状硫化物)类矿床之一,位于莱茵海西期地体的上哈茨地块。该矿床形成于泥盆纪,矿体赋存于艾菲尔阶的威森巴赫页岩中,经华力西造山运动发生了强烈的变形。主要有新矿体、老矿体和富含重晶石的灰色矿体,主要硫化物矿物为黄铁矿、闪锌矿、方铅矿和黄铜矿。硫同位素数据显示,拉梅尔斯贝格矿床有2个硫源,一个是热液成因;一个是生物成因,来自细菌还原的海水中的硫酸盐。铅同位素说明,它的铅主要来自均匀的地壳。与其他SHMS类矿床相比,拉梅尔斯贝格矿床明显富铜。

  • 加载中
  • 图 1  哈茨地区区域地质简图(据参考文献[7-8]修改)

    Figure 1. 

    图 2  拉梅尔斯贝格隆起到哥斯拉尔海槽横切面(据参考文献[7]修改)

    Figure 2. 

    图 3  新、老矿体剖面图(据参考文献[7]修改,dmt等代号含义同图 2)

    Figure 3. 

    图 4  页岩中的条带状矿石(a)和Kniest矿石(b) (据参考文献[19])

    Figure 4. 

    图 5  拉梅尔斯贝格矿床中不同矿石类型旋回(据参考文献[7]修改)

    Figure 5. 

    图 6  拉梅尔斯贝格矿床硫同位素数据图(据参考文献[7]修改)

    Figure 6. 

    图 7  哈茨地块矿化层中矿石铅同位素的206Pb/204Pb和208Pb/204Pb值(据参考文献[7]修改)

    Figure 7. 

    图 8  SHMS类矿床成矿模型(据参考文献[28-2931]修改)

    Figure 8. 

    表 1  拉梅尔斯贝格矿床与沉积型块状硫化物矿床特征对比(据参考文献[7]修改)

    Table 1.  Attributes of the sediments-hosted massive sulfide(SHMS)deposits compared with the observations at Rammelsberg

    对比内容沉积块状硫化物矿床拉梅尔斯贝格矿床
    形成环境受断层控制的盆地内的沉积岩容矿。岩相和厚度横向上的变化反映了垂直构造运动和不同的沉降速率哥斯拉尔海槽是以断层为边界的盆地,它与西哈茨隆起之间的沉积相和厚度有明显的变化。拉梅尔斯贝格位于西哈茨隆起和哥斯拉尔海槽之间的转折端附近
    与盆地演化关系矿化发生在盆地发展的后裂谷“热沉降”阶段中泥盆统页岩序列是在后裂谷热沉降阶段沉积形成的
    与岩浆活动关系与岩浆活动在时间和空间上都有密切联系哥斯拉尔海槽内的艾菲尔阶页岩序列中的辉绿岩岩床,含矿地层中见凝灰岩层
    容矿围岩特征容矿沉积岩:原地沉积岩是细碎屑岩和碳酸盐岩,它们都沉积在低能量环境中;异地沉积岩是在高能量环境中迅速沉积的粗碎屑岩、泥石流和砾岩,可能与同生沉积断裂活动有关威森巴赫页岩序列中的页岩和粉砂岩反映了当时的低能量环境。局部的泥石流和松软沉积物变形
    时代分布沉积型块状硫化物矿床主要集中在中元古代和古生代形成于泥盆纪
    产出特征块状硫化物矿化受层控产出,走向长达6km,厚度变化大。层状构造很常见2个具有层状结构的块状硫化物矿体,一个层控重晶石矿体
    筒状矿化特征产出在块状硫化物下面的筒状矿化(脉、细脉和交代作用),可能为热液通道或者喷口筒状矿化的Kniest带可能是层控块状硫化物的热液供给通道
    品位和吨位具有经济价值的矿体达到上千万吨的矿石量(一些元古宙矿床甚至有上亿吨矿石量),Zn+Pb品位大于10%,Cu通常并不重要典型的具有经济价值的沉积型块状硫化物矿床,矿石储量27~30Mt,品位高,14%Zn+6%Pb,1%的Cu含量使其在沉积型块状硫化物矿床中也很少见
    金属分带特征Cu+Fe核靠近喷口,Pb和Zn分散在周围,在周边和/或者上覆有重晶石化在块状硫化物中发现了Cu-Pn-Zn垂直分带,重晶石到处都有,但只在上覆的“灰矿”中富集
    原生硫化物特征原生硫化物主要为细粒闪锌矿-黄铜矿,并伴有磁黄铁矿和/或者黄铁矿,少量毒砂和黝铜矿主要硫化物为黄铁矿、闪锌矿、方铅矿和黄铜矿,还有少量磁黄铁矿、毒砂、磁铁矿和黝铜矿
    蚀变常见硅化和碳酸盐化(主要为铁碳酸盐)。偶见电气石化、钠长石化、绿泥石化和绢云母化Kniest微富集二氧化硅、绿泥石和钠长石。铁白云石是块状矿石的主要成分之一,菱铁矿脉也产在Kniest中
    铅同位素特征每个矿床中的铅同位素组成均一拉梅尔斯贝格矿床的铅同位素组成均一
    硫同位素特征硫一般有2个来源:一个是热液来源,具有均一的δ34S值;另一个是生物还原海水硫,其δ34S值变化范围大。重晶石中的硫反映的是海水硫酸盐中的硫拉梅尔斯贝格矿床中的硫有2种来源,一种是热液来源;另一种是生物成因,是细菌还原海水中硫
    下载: 导出CSV
  • [1]

    王炜, 鲍征宇, 李璇, 等. SEDEX型矿床地质地球化学特征及研究趋势[J].物探与化探, 2010, 34(4):415-434. http://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201004000.htm

    [2]

    毛景文, 张作衡, 王义天, 等.国外主要矿床类型、特点及找矿勘查[M].北京:地质出版社, 2012.

    [3]

    王玉奇. Sedex型矿床和VMS型矿床对比研究[J].资源环境与工程, 2009, 23(3):259-262. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK200903010.htm

    [4]

    黄志伟.喷流沉积型铅锌矿床的主要控矿构造[J].西部探矿工程, 2013, 10:154-157. doi: 10.3969/j.issn.1004-5716.2013.06.051

    [5]

    Cooke D R, BullS W, Large R, et al. The importance of oxidized brines for the formation of Australian Proterozoic stratiform sedi-ment-hosted Pb-Zn(Sedex) deposits[J]. Economic Geology, 2000, 95:1-18. http://econgeol.geoscienceworld.org/content/95/1/1

    [6]

    关东杰.拉梅尔斯贝格——近代欧洲矿冶业的摇篮[J].金属世界, 1995, 3:26. http://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ199503017.htm

    [7]

    Large D, Walcher E. The Rammelsberg massive sulphide Cu-ZnPb-Ba-Deposit, Germany:an example of sediment-hosted, massive sulphide mineralisation[J].Miner. Deposita, 1999, 34:522-538. https://link.springer.com/article/10.1007/s001260050218

    [8]

    Reinaldo S. Black shales and massive sulfide deposits:causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar[J]. Miner. Deposita, 2011, 46:584-614. https://link.springer.com/article/10.1007/s00126-010-0311-x

    [9]

    Berthelsen A. Mobile Europe[C]//Blundell D, Freeman R, Mueller S. A continent revealed the European geotraverse. Cambridge:Cam-bridge University Press, 1992:11-32.

    [10]

    Wachendorf H. Der Harz-variszischer Bau und geodynamische Entwicklung[J]. Geol. Jahrb. A, 1986, 91:3-67.

    [11]

    Albrecht A. Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany[J]. Geologische Rundschau, 1991, 80(3):669-690. doi: 10.1007/BF01803694

    [12]

    Müller G, Strauss W B. Beitrag zur Regionalmetamorphose des Harzes[J]. Geologische Rundschau, 1985, 74:87-94. doi: 10.1007/BF01764572

    [13]

    Walcher E H. Geologisch-lagerstättenkundliche Untersuchungen am Zeitäquivalent (Lagerhorizont) der Lagerstätte Rammelsberg[D]. Germany:TU Clausthal phD Thesis, 1986.

    [14]

    Sperling H. Das Neue Lager der Blei-Zink-Erzlagerstätte Ram-melsberg[J]. Geol. Jahrb D, 1986, 85:5-177.

    [15]

    Muchez P, Stassen P. Multiple origin of the'Kniest feeder zone' of the stratiform Zn-Pb-Cu ore deposit of Rammelsberg, Germa-ny[J]. Miner. Deposita, 2006, 41(1):46-51. doi: 10.1007/s00126-005-0039-1

    [16]

    Hannak W W. Genesis of the Rammelsberg ore deposit near Gos-lar/Upper Harz, Federal Republic of Germany[C]//Wolf K H. Handbook of stratabound and stratiform ore deposits. Elsevier, Am-sterdam, 1981, 9:551-642.

    [17]

    Craig J R, Vaughan D J. Ore microscopy and ore petrology[M]. New York:Wiley-Interscience, 1981.

    [18]

    Eldridge C S, Barton P B, Ohmoto H. Mineral textures and their bearing on formation of the Kuroko orebodies[J]. Econ. Geol. Monogr., 1983, 5:241-281.

    [19]

    Mueller A G. The Rammelsberg shale-hosted Cu-Zn-Pb sulfidebarite deposit, Germany:Linking SEDEX and Kuroko-type mas-sive sulfides. Slide presentation and explanatory notes[EB/OL] (2008-03-21)[2015-06-05] https://www.e-sga.org/index.php?id=199.

    [20]

    Paul D J. Sedimentologische und geologische Untersuchungenzur Rekonstruktion des Ablagerungsraumesvor and nach der Bildung der Rammelsberger Blei-Zink-Lager im Oberharz[J]. Geol. Jahrb D, 1975, 12:3-93.

    [21]

    Renner T. Schichtsilikate und Karbonateals Faziesindikatoren in den synsedimentär-exhalativen Lagerstätten Rammelsberg, Meg-gen und Eisen[J]. Z Dtsch Geol Ges, 1986, 137:253-285. http://www.schweizerbart.de/papers/zdgg_alt/detail/137/53840

    [22]

    Anger G, Nielsen H, Puchelt H, et al. Sulfur isotopes in the Ram-melsberg ore deposit (Germany)[J]. Econ. Geol., 1966, 61:511-536. doi: 10.2113/gsecongeo.61.3.511

    [23]

    Nielsen H. Sulfur isotope ratios in strata-bound mineralizations in Central Europe[J]. Geol. Jahrb D, 1985, 70:225-262.

    [24]

    Doe B, Zartman R E. Plumbotectonics. The Phanerozoic[C]//Barnes H L.Geochemistry of hydrothermal ore deposits. New York:Wiley-Interscience, 1979:22-70.

    [25]

    Tischendorf G, Bielicki K H, Franzke H J. On the genesis of Perm-ian and post-Permian mineralizations in the Harz Mountains ac-cording to new Pb-isotope measurements[C]//Möller P, Lüders V. Formation of hydrothermal vein deposits. A case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Monogr Ser on Mineral Deposits, 1993, 30:65-76.

    [26]

    Lévèque J, Haack U. Pb isotopes of hydrothermal ores in the Harz[C]//Möller P, Lüders V. Formation of hydrothermal vein de-posits. A case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Monogr Ser on Mineral Deposits, 1993, 30:197-210.

    [27]

    Monna F, Hamer K, Lévêque J, et al. Pb isotopes as a reliable mark-er of early mining and smelting in the Northern Harz province (Lower Saxony, Germany)[J]. Journal of Geochemical Exploration, 1999, 68(3):201-210.

    [28]

    Large D E. Sediment-hosted massive sulphide lead-zinc deposits:an empirical model[C]//Sangster D F. Sediment-hosted, stratiform lead-zinc deposits. Miin Assoc Can Short Course Handbook, 1983, 8:1-29.

    [29]

    Lydon J W. Chemical parameters controlling the origin and deposi-tion of sediment-hosted stratiform lead-zinc deposits[C]//Sangster D F. Sediment-hosted, stratiform lead-zinc deposits.Miin Assoc. Can Short Course Handbook, 1983, 8:175-250.

    [30]

    Russel M J. Major sediment-hosted exhalative zinc-lead deposits:formation from hydrothermal convection cells that deepen during crustal extension[C]//Sangster D F. Short Course in SedimentHosted Stratiform Lead-Zinc Deposits. Victoria:Mineralogical As-sociation of Canada, 1983:251-282.

    [31]

    Goodfellow W D, Lydon J W, Turner R. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphidede-posits[J]. Geol. Assoc. Can. Spec. Pub., 1994, 40:201-251.

    [32]

    Misra K C. Understanding Mineral Deposits[M]. Kluwer Academic Publishers, 1999.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  829
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2016-04-02
修回日期:  2016-05-16
刊出日期:  2017-08-25

目录