西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据

赵珍, 陆露, 吴珍汉, 胡道功. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9): 1553-1561.
引用本文: 赵珍, 陆露, 吴珍汉, 胡道功. 西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据[J]. 地质通报, 2017, 36(9): 1553-1561.
ZHAO Zhen, LU Lu, WU Zhenhan, HU Daogong. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track[J]. Geological Bulletin of China, 2017, 36(9): 1553-1561.
Citation: ZHAO Zhen, LU Lu, WU Zhenhan, HU Daogong. Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track[J]. Geological Bulletin of China, 2017, 36(9): 1553-1561.

西藏冈底斯新生代以来的抬升过程——磷灰石裂变径迹热史模拟的证据

  • 基金项目:
    中国地质调查局项目《羌塘盆地油气地质构造保存条件研究》(编号:1212011221111)和《西藏羌塘盆地油气地质构造保存条件调查》(编号:12120115000901)
详细信息
    作者简介: 赵珍(1987-), 女, 博士后, 构造地质专业。E-mail:zhaozhen03@126.com
    通讯作者: 吴珍汉(1965-), 男, 博士, 研究员, 从事青藏高原区域地质调查与地质构造研究工作。E-mail:zhenhanwu@cags.ac.cn
  • 中图分类号: P534.6;P578.92+2

Cenozoic uplift process in Gangdise, Tibet:Evidence from thermal history modeling of apa-tite fission track

More Information
  • 西藏冈底斯南缘中酸性侵入岩的磷灰石裂变径迹年龄在37~25Ma之间,热史模拟过程反映冈底斯经历了3个阶段的抬升演化。40~26Ma的快速冷却抬升阶段:受控于印度-欧亚大陆完全碰撞拼合的影响,并在37~26Ma抬升至现今海拔高度;26~8Ma的剥蚀阶段:受夷平和大型逆冲推覆活动的影响,出现剥蚀和抬升交替过程;8~0Ma的缓慢冷却阶段:受南北向裂谷作用影响,出现内部差异抬升。此外,北部墨竹工卡地区和南部泽当、桑耶地区,西部桑耶地区和东部泽当地区,均具有相似的抬升过程和历史,没有明显差异,暗示冈底斯经历了整体性、较均一的阶段性抬升过程。

  • 加载中
  • 图 1  研究区地质简图(据参考文献修改)

    Figure 1. 

    图 2  磷灰石热史模拟演化

    Figure 2. 

    图 3  青藏高原抬升过程演化的不同观点

    Figure 3. 

    表 1  研究区磷灰石裂变径迹年龄

    Table 1.  Apatite fission track age of the study area

    样品 岩性 现今海
    拔/m
    粒数 ρs/(105·cm-2)
    (Ns)
    ρi/(105·cm-2)
    (Ni)
    ρd/(105·cm-2)
    (Nd)
    P(χ2)
    /%
    径迹长度/m
    (N)
    中值年龄/a
    (±1σ)
    池年龄/Ma
    (±1σ)
    泽当Ⅰ区 B075-2 花巧闪长岩 3823 28 3.001
    (620)
    21.014
    (4342)
    10.435
    (7312)
    9.8 12.7±2.1
    (115)
    31±3 31±2
    B117-1 花巧闪长岩 4019 30 2.165
    (364)
    17.05
    (2866)
    10.45
    (7312)
    71 12.8±2.2
    (101)
    27±2 28±2
    B121-1 二长闪长岩 3567 28 1.529
    (248)
    10.031
    (1627)
    10.457
    (7312)
    75 12.5±2.3
    (49)
    33±3 33±3
    泽当Ⅱ区 B118-1 石英二长岩 3564 29 2.738
    (446)
    22.55
    (3673)
    10.453
    (7312)
    54.8 13.2±1.8
    (61)
    26±2 26±2
    B104-3 石英二长岩 3557 28 1.998
    (774)
    17.106
    (6625)
    10.447
    (7312)
    40.4 13.2±2.1
    (97)
    25±2 25±2
    桑耶Ⅲ区 B122-1 二长闪长岩 4329 26 1.36
    (156)
    8.769
    (1006)
    10.433
    (7312)
    89.6 / 34±4 34±4
    B122-7 石英二长闪长岩 4309 30 1.421
    (125)
    8.241
    (725)
    10.43
    (7312)
    99.7 12.6±2.4
    (34)
    37±4 37±4
    B123-1 石英二长闪长岩 4040 29 1.043
    (234)
    6.682
    (1499)
    10
    (7312)
    10.4 12.6±2.3
    (89)
    32±4 32±3
    墨竹工卡Ⅳ区 JM22-2 花岗斑岩 3961 12 0.637
    (43)
    6.501
    (439)
    12.666
    (7312)
    24.5 / 26±5 26±4
    JM24-1 花岗斑岩 5022 30 1.095
    (150)
    11.027
    (1511)
    12.593
    (7312)
    84.4 12.3±2.0
    (68)
    26±3 26±3
    JM27-1 石英二长闪长玢岩 3965 28 0.460
    (171)
    3.910
    (1452)
    12.519
    (7312)
    68.9 12.3±1.9
    (104)
    31±3 31±3
    注:ρs、ρi和ρd分别为自发径迹密度、诱发径迹密度和标准径迹密度;Ns、Ni和Nd分别对应自发径迹数,诱发径迹数和标准径迹数;P(χ2)为χ2检验值
    下载: 导出CSV

    表 2  磷灰石裂变径迹年龄古地表海拔

    Table 2.  Paleo-altitude of the apatite fission track age sample

    样品编号 总抬升/m 古埋深/m 现今样品海拔/m 古地表海拔/m
    泽当Ⅰ区 B075-2 1821 -3140 3823 5142
    B 117-1 2022 -3140 4019 5137
    B 121-1 1582 -3140 3567 5125
    泽当Ⅱ区 B 104-3 1882 -3140 3557 4815
    B 118-1 1582 -3140 3564 5122
    桑耶Ⅲ区 B 122-7 1882 -3140 4239 5497
    B 123-1 1702 -3140 4040 5478
    墨竹工卡Ⅳ区 JM24-1 1731 -3140 5022 6431
    JM27-1 1883 -3140 3956 5213
    下载: 导出CSV
  • [1]

    Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1988, 327(1594):379-413. doi: 10.1098/rsta.1988.0135

    [2]

    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 263:1663-1670.

    [3]

    Yin A, Harrison T M, Ryerson F J, et al. Tertiary structural evolution of the Gangdese thrustsystem, southeastern Tibet[J]. Journal of Geophysical Research, 1994, 99(B9):18175-18201. doi: 10.1029/94JB00504

    [4]

    Copeland P, Harrison T M, Kidd W S F, et al. Rapid early Miocene acceleration of uplift in the Gangdese Belt Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision[J]. Earth and Planetary Science Letters, 1987, 86:240-252. doi: 10.1016/0012-821X(87)90224-X

    [5]

    Spicer R A, Harris N B W, Widdowson M W, et al. Constant elevation of Southern Tibet over the past15 million years[J].Nature, 2003, 421:622-624. doi: 10.1038/nature01356

    [6]

    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to-Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(9):677-681. http://www.ncbi.nlm.nih.gov/pubmed/16467830

    [7]

    崔之久, 高全洲, 刘耕年, 等.夷平面、古岩溶与青藏高原隆升[J].中国科学(D辑), 1996, 26(4):378-386. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNDL201703004&dbname=CJFDPREP

    [8]

    李吉均, 文世宣, 张青松, 等.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学(A辑), 1979, 6:608-616. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197906008.htm

    [9]

    李廷栋.青藏高原隆升的过程和机制[J].地球学报, 1995, 1:1-9. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNDL201703004&dbname=CJFDPREP

    [10]

    钟大赉, 丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑), 1996, 26(4):289-295. http://youxian.cnki.com.cn/yxdetail.aspx?filename=YNDL201703004&dbname=CJFDPREP

    [11]

    刘顺生, 张峰.西藏南部地区的裂变径迹年龄和上升速度的研究[J].中国科学(B辑), 1987, 9:1000-1010. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198709011.htm

    [12]

    江万, 莫宣学, 赵崇贺, 等.矿物裂变径迹年龄与青藏高原隆升速率研究[J].地质力学学报, 1998, 4(1):13-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX801.001.htm

    [13]

    袁万明, 王世成, 李胜荣, 等.西藏冈底斯带构造活动的裂变径迹证据[J].科学通报, 2001, 45(20):1739-1742. doi: 10.3321/j.issn:0023-074X.2001.20.017

    [14]

    Gleadow A J W, Duddy I R. A natural long-term track annealing experiment for apatite[J]. Nuclear Tracks, 1981, 5:169-174. doi: 10.1016/0191-278X(81)90039-1

    [15]

    Nacser C W. The fading of fission tracks in the geologic environment-data from deep drill holes[J]. Nuclear Tracks, 1981, 5:248-250. doi: 10.1016/0191-278X(81)90055-X

    [16]

    Copeland P, Harrison M, Yun P, et al. Thermal evolution of the Gangdese batholith, southern Tibet:A history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236. doi: 10.1029/94TC01676

    [17]

    陈文寄, 李齐, 郝杰, 等.冈底斯岩带热演化史的MDD模式新证据Ⅱ[J].科学通报, 1998, 43(21):2332-2336. doi: 10.3321/j.issn:0023-074X.1998.21.022

    [18]

    陈文寄, 李齐, 郝杰, 等.冈底斯岩带结晶后的热演化史及其构造含义[J].中国科学(D辑), 1999, 29(1):9-15. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901001.htm

    [19]

    Harrison T M, Yin A, Grove M. The ZedongWindow:A record of superposedTertiaryconvergencein southeasternTibet[J]. Journal of Geophysical Research, 2000, 105(B8):19211-19230. doi: 10.1029/2000JB900078

    [20]

    袁万明, 候增歉, 李胜荣, 等.雅鲁藏布江逆冲带活动的裂变径迹定年证据[J].科学通报, 2002, 47(2):147-150. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200202016.htm

    [21]

    向树元, 张士贞, 胡敬仁, 等.西藏米拉山断裂活动的磷灰石裂变径迹证据[J].地球科学-中国地质大学学报, 2012, 37, 增刊2:39-46. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2012S2011.htm

    [22]

    吴珍汉, 江万, 周继荣, 等.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析[J].地质学报, 2001, 75(4):468-476. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104007.htm

    [23]

    丁林, 钟大赉, 潘裕生, 等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报, 1995, 40(16):1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018

    [24]

    赵志丹, 莫宣学, 郭铁鹰, 等.西藏南部岩体裂变径迹年龄与高原隆升[J].自然科学进展, 2003, 13(8):877-880. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200308019.htm

    [25]

    王立成, 魏玉帅.西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据[J].岩石学报, 2013, 29(3):1039-1047. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303025.htm

    [26]

    Lu L, Zhao Z, Wu Z H, et al. Fission track thermochronology evidence for the Cretaceous and Paleogene tectonic event of Nyainrong Microcontinent, Tibet[J]. Acta Geologica Sinica, 2015, 89(1):133-144. doi: 10.1111/1755-6724.12400

    [27]

    Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision[J]. Geological Society of America Bulletin, 1999, 111(11):1644-1664. doi: 10.1130/0016-7606(1999)111<1644:TDHOSA>2.3.CO;2

    [28]

    Wu Z H, Hu D G, Ye P S. Thrusting of the North Lhasa Block in the Tibetan Plateau[J]. Acta Geologica Sinica, 2004, 78(1):246-259. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxw200401031&dbname=CJFD&dbcode=CJFQ

    [29]

    叶培盛. 拉萨地块中部蛇绿岩与逆冲推覆构造[D]. 中国地质科学院博士学位论文, 2004.http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213421.htm

    [30]

    Yuan W M, Zhang X T, Dong J Q, et al. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China[J]. Radiation Measurements, 2003, 36:357-362. doi: 10.1016/S1350-4487(03)00151-3

    [31]

    Bellemans F, Decorte F, Denhaute P V. Composition of SRM and CN U-doped glasses:significance for their use as thermal neutron fluence monitors in fission track dating[J]. Radiation Measurements, 1995, 24(2):153-160. doi: 10.1016/1350-4487(94)00100-F

    [32]

    Yuan W M, Dong J Q, Carter A, et al. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China:constraints from apatite fission track data[J]. Tectonophysics, 2006, 412:183-193. doi: 10.1016/j.tecto.2005.09.007

    [33]

    Hurford A J, Green P F. The zeta age calibration of fission-track dating[J]. Chemical Geology, 1983, 41:285-317. doi: 10.1016/S0009-2541(83)80026-6

    [34]

    Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing of fission tracks in apatite:1. A qualitative description[J]. Chemical Geology:Isotope Geoscience section, 1986, 59:237-253. doi: 10.1016/0168-9622(86)90074-6

    [35]

    Green P F. A New Look at Statistics in Fission Track Dating[J]. Nucl Tracks, 1981, 5:77-86. doi: 10.1016/0191-278X(81)90029-9

    [36]

    Galbraith R F, Laslett G M. Statistical models for mixed fissiontrack ages[J]. Nuclear Tracks and Radiation Measurements, 1993, 2(4):459-470.

    [37]

    Brandon M. Decomposition of mixed grain age distributions using BINOMFIT[J].On Track, 2002, 24:13-18.

    [38]

    赵珍, 吴珍汉, 胡道功, 等.青藏高原冈底斯带南缘泽当多金属矿田多期岩浆活动及年代意义[J].地球学报, 2014, 35(6):703-712. doi: 10.3975/cagsb.2014.06.05

    [39]

    Armstrong P A.Thermochronometers in sedimentary basins[J]. Reviews in Mineralogy and Geochemistry, 2005, 58(1):499-525. doi: 10.2138/rmg.2005.58.19

    [40]

    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission-track annealing kinetics Ⅲ:Extrapolation to geological time scales[J]. American Mineralogist, 1999, 84:1235-1255. doi: 10.2138/am-1999-0903

    [41]

    Ketcham R A, Donelick R A, Donelick M B. AFT Solve:A program for multi-kinetic modeling of apatite fission-track data[J]. Geological Materials Research, 2000, 2(1):1-32. http://ammin.geoscienceworld.org/content/88/5-6/929

    [42]

    陈文寄, 李齐, 周新华, 等.西藏高原南部两次快速冷却事件的构造含义[J].地震地质, 1996, 18(2):109-115. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ602.002.htm

    [43]

    Quidelleur X, Grove M, Lovera O. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet[J]. Journal of Geophysical Research, 1997, 102(B2):2659-2679. doi: 10.1029/96JB02483

    [44]

    Guillot S, Hodges K, Lefort P, et al. New constraints on the age of the Manasluleucogranite:Evidence for episodic tectonic denudation in the Central Himalayas[J]. Geology, 1994, 22(6):559-562. doi: 10.1130/0091-7613(1994)022<0559:NCOTAO>2.3.CO;2

    [45]

    Coleman M, Hodges K. Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517):49-52. doi: 10.1038/374049a0

    [46]

    Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk valley, South Tibet[J]. Geology, 1999, 27(9):831-834. doi: 10.1130/0091-7613(1999)027<0831:RBLATQ>2.3.CO;2

    [47]

    丁林, 岳雅慧, 蔡福龙, 等.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J].地质学报, 2006, 80(9):1252-1261. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200609003.htm

    [48]

    Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla shear zone:implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14(3):658-676. doi: 10.1029/95TC00608

    [49]

    吴珍汉, 江万, 周继荣, 等.青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析[J].地质学报, 2001, 75(4):468-476. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200104007.htm

    [50]

    吴珍汉, 江万, 吴中海, 等.青藏高原腹地典型盆-山构造形成时代[J].地球学报, 2002, 23(4):289-294. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200204000.htm

    [51]

    袁万明, 董金泉, 保增宽, 等.西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束[J].原子能科学技术, 2008, 42(6):570-573. http://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200806023.htm

    [52]

    祝嵩. 雅鲁藏布江河谷地貌与地质环境演化[D]. 中国地质科学院博士学位论文, 2012.http://cdmd.cnki.com.cn/Article/CDMD-82501-1012371268.htm

    [53]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu. Rev. Earth Planet Sci., 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

    [54]

    吴珍汉, 叶培盛, 胡道功, 等.拉萨地块北部逆冲推覆构造系统[J].地质论评, 2003, 49(1):74-81. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200301010.htm

    [55]

    Currie B S, Rowley D, Tabor N. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogeny[J].Geology, 2005, 33(3):181-184. doi: 10.1130/G21170.1

    [56]

    Copeland P, Harrison T M, Yun P. et al. Thermal evolution of the Gangdese batholith, southern Tibet:a history of episodic unroofing[J]. Tectonics, 1995, 14(2):223-236. doi: 10.1029/94TC01676

    [57]

    Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacitesandrhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2):158-171. http://www.sciencedirect.com/science/article/pii/S0012821X0800277X

    [58]

    Wang Q, Wyman D A, Li Z X, et al. Eocene north-south trending dikes in central Tibet:New constraints on the timing of eastwest extension with implications for early plateau uplift?[J]. Earth and Planetary Science Letters, 2010, 298:205-216. doi: 10.1016/j.epsl.2010.07.046

    [59]

    吴珍汉, 吴中海, 胡道功, 等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质, 2009, 23(6):993-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200906001.htm

    [60]

    李亚林, 王成善, 伊海生, 等.西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J].地质学报, 2006, 80(8):1118-1130. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200608009.htm

    中国地质科学院成都地质矿产研究所. 青藏高原及邻区地质图(1: 1500000). 1988.

  • 加载中

(3)

(2)

计量
  • 文章访问数:  1168
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2016-03-11
修回日期:  2017-02-10
刊出日期:  2017-09-25

目录