Chronological characteristics and tectonic significance of Her-cynian intrusive rocks at Yongzhuquan, Ejina Banner, Inner Mongolia
-
摘要:
内蒙古额济纳旗涌珠泉侵入岩是月牙山构造混杂岩带以北规模较大的侵入体。在1:5万区域地质调查的基础上,将该岩体解体为花岗闪长岩、二长花岗岩和正长花岗岩,获得二长花岗岩锆石U-Pb年龄为330.7±2.9Ma,确定其形成于早石炭世,表明北山地区晚古生代岩浆活动强烈。通过分析岩体的岩石化学和地球化学特征,确定其形成于拉张构造环境,说明早石炭世北山地区已进入拉伸构造环境,这对研究北山地区晚古生代地壳演化过程有积极意义。
Abstract:The Yongzhuquan intrusive rocks to the north of the Yueyashan tectonic melange zone in Inner Mongolia constitute a large intrusive body. 1:50000 regional geological survey shows that the rock mass is decomposed into granodiorite, monzonitic gran-ite and syenogranite. The zircon U-Pb age of the monzogranite is 330.7±2.9 Ma, suggesting Early Carboniferous and indicating that the Late Paleozoic magmatism in the Beishan area was very active. Through the analysis of rock chemistry and geochemical character-istics, the authors hold that it was formed in a tension tectonic setting and that the tectonic setting of the Beishan area in the Early Carboniferous entered into a stretching environment. This conclusion is of great significance for the study of the crustal evolution of Late Paleozoic in Beishan area.
-
Key words:
- Beishan area /
- Yongzhuquan /
- granite /
- geochemical characteristics /
- zircon U-Pb age /
- Early Carboniferous /
- stretching envi-ronment
-
-
图 3 侵入岩A/CNK-A/NK判别图解[16]
Figure 3.
图 4 涌珠泉侵入岩SiO2-K2O图解[17]
Figure 4.
图 5 稀土元素配分模式图(球粒陨石标准化值据参考文献[18])
Figure 5.
图 6 微量元素蛛网图(原始地幔标准化值据参考文献[18])
Figure 6.
图 9 lg[(CaO)/(Na2O+K2O)]-SiO2图解[29]
Figure 9.
表 1 涌珠泉侵入岩主量元素分析结果
Table 1. Major element analytical results of intrusive rocks in Yongzhuquan
% 测试项 YQ02 P21YQ3 P14YQ2 YQ34 YQ35 P27YQ1 P20YQ1 YQ24 P21YQ2 P14YQ1 YQ1 P20YQ2 YQ25 正长花岗岩 二长花岗岩 花岗闪长岩 SiO2 70.50 68.86 65.53 69.02 70.90 70.66 73.02 72.55 74.04 71.12 76.03 72.17 75.76 TiO2 0.32 0.33 0.61 0.34 0.30 0.46 0.28 0.31 0.18 0.37 0.08 0.21 0.08 Al2O3 14.67 14.88 15.73 14.93 14.26 14.12 13.50 13.86 13.45 14.03 13.14 13.41 12.97 Fe2O3 0.81 0.60 1.39 1.24 1.68 0.74 0.61 0.55 0.35 1.10 0.48 0.53 0.61 FeO 1.41 1.65 2.47 1.01 0.34 2.63 1.41 1.72 1.03 1.42 0.13 1.92 0.65 MnO 0.044 0.034 0.067 0.032 0.035 0.05 0.044 0.05 0.044 0.029 0.01 0.04 0.008 MgO 0.99 0.79 2.29 0.91 0.37 0.80 0.64 0.63 0.43 1.05 0.09 0.14 0.08 CaO 3.31 2.74 3.94 2.57 2.68 1.46 1.56 1.30 1.82 1.28 0.61 1.15 0.48 Na2O 4.83 3.85 3.68 4.61 4.00 2.96 3.44 3.48 5.30 4.78 3.94 3.12 4.16 K2O 1.03 2.40 2.69 1.44 2.00 4.45 4.32 4.23 1.32 2.68 4.69 5.88 4.44 P2O5 0.088 0.091 0.158 0.098 0.089 0.15 0.109 0.09 0.052 0.089 0.03 0.03 0.013 H2O+ 1.10 2.12 0.96 2.08 1.49 0.71 0.62 0.59 1.09 1.16 0.45 0.64 0.37 H2O- 0.23 0.13 0.11 0.55 0.32 0.17 0.17 0.17 0.13 0.17 0.13 0.15 0.15 烧失量 1.94 3.72 1.30 3.70 3.24 1.21 0.93 1.1 1.95 1.89 0.73 1.22 0.70 总计 99.94 99.95 99.86 99.89 99.89 99.69 99.86 99.87 99.97 99.84 99.96 99.83 99.95 σ 1.25 1.51 1.80 1.41 1.29 1.98 2.01 2.01 1.41 1.98 2.25 2.78 2.26 AR 1.97 2.10 1.96 2.06 2.10 2.81 3.13 3.07 2.53 2.90 4.36 4.24 4.54 DI 76.75 76.50 68.47 77.52 79.45 82.60 86.58 86.30 85.91 85.06 94.88 89.16 94.81 SI 10.92 8.50 18.29 9.88 4.41 6.88 6.10 5.96 5.10 9.52 0.94 1.21 0.84 K/Na 0.21 0.62 0.73 0.31 0.50 1.50 1.26 1.22 0.25 0.56 1.19 1.88 1.07 A/CNK 0.97 1.07 0.97 1.08 1.04 1.14 1.02 1.10 1.00 1.08 1.04 0.99 1.03 A/NK 1.61 1.68 1.75 1.64 1.63 1.45 1.29 1.34 1.32 1.31 1.41 1.18 1.14 τ 30.75 33.42 19.75 30.35 34.20 24.02 36.39 34.03 45.28 25 118.84 49.96 117.47 注:表中所列误差均为1σ;2~6、8、11~13、15、17~20、23、25号点的206Pb/238U年龄加权平均值为330.7±2.9Ma 表 2 涌珠泉侵入岩稀土和微量元素含量及特征参数
Table 2. Rare earth and trace element content and characteristic parameters of Yongzhuquan intrusive rocks
10-6 测试项 XT02 P21XT3 P14XT2 XT34 XT35 P27XT1 P20XT1 XT24 P21XT2 P14XT1 XT1 P20XT2 XT25 正长花岗岩 二长花岗岩 花岗闪长岩 La 17.51 23.83 57.50 13.03 12.83 30.29 27.48 27.80 15.22 17.39 21.90 83.46 18.22 Ce 36.10 44.30 107.4 24.97 24.67 63.65 51.82 59.71 30.32 31.88 54.92 153.9 40.04 Pr 4.20 4.87 10.75 2.99 2.80 7.73 7.15 7.44 3.68 3.81 7.66 18.46 5.99 Nd 15.74 16.62 34.80 11.33 10.55 30.06 25.69 28.80 13.89 14.20 31.32 62.53 24.67 Sm 3.01 2.59 5.38 2.23 2.06 6.22 5.77 6.74 3.11 2.62 8.84 9.31 6.68 Eu 0.90 0.51 1.31 0.67 0.51 1.59 0.77 0.73 0.56 0.72 0.26 1.09 0.14 Gd 2.67 2.37 4.92 2.07 1.84 5.70 5.68 6.50 3.01 2.41 6.72 8.03 6.24 Tb 0.44 0.34 0.68 0.29 0.27 0.95 0.97 1.20 0.57 0.38 1.19 0.95 1.24 Dy 2.37 1.92 3.85 1.62 1.44 5.68 6.45 7.54 3.70 2.20 6.23 5.00 8.12 Ho 0.50 0.37 0.73 0.27 0.24 1.06 1.30 1.51 0.74 0.43 1.23 0.93 1.61 Er 1.38 1.16 2.00 0.78 0.68 2.84 3.84 4.09 2.27 1.16 3.48 2.59 4.49 Tm 0.22 0.18 0.35 0.12 0.11 0.50 0.67 0.73 0.41 0.21 0.62 0.40 0.84 Yb 1.32 1.63 2.09 0.81 0.75 2.98 4.00 4.16 2.71 1.33 3.63 2.40 5.34 Lu 0.18 0.23 0.36 0.21 0.16 0.47 0.73 0.77 0.42 0.27 0.68 0.44 0.95 Y 13.53 9.68 20.40 8.13 7.35 28.38 39.78 41.79 20.05 12.29 32.05 0.40 0.84 ΣREE 100.07 110.6 252.52 69.52 66.26 188.11 182.09 199.49 100.66 91.3 161.31 374.99 167.17 LREE/HREE 8.53 11.31 14.5 8.95 9.73 6.91 5.02 4.95 4.83 8.42 4.44 15.85 3.32 δEu 0.95 0.62 0.76 0.94 0.79 0.8 0.41 0.33 0.55 0.86 0.1 0.38 0.06 δCe 0.98 0.94 0.97 0.93 0.95 0.98 0.87 0.98 0.95 0.9 1.92 0.91 0.92 (La/Yb)N 8.94 9.86 18.55 10.83 11.53 6.85 4.63 4.5 3.79 8.82 0.46 23.45 2.3 (La/Sm)N 3.66 5.79 6.72 3.67 3.92 3.06 2.99 2.60 3.08 4.17 0.18 5.64 1.71 (Gd/Yb)N 1.63 1.17 1.90 2.06 1.98 1.54 1.15 1.26 0.90 1.46 1.49 2.70 0.94 Li 15.43 10.13 18.11 26.79 5.26 23.22 42.78 45.12 6.33 13.34 5.29 10.54 14.10 Rb 27.8 79.28 91.4 35.7 48.4 173.8 246.0 271.2 59.92 61.8 267.0 141.2 264.1 Sr 301.8 152.8 585.0 285.7 194.4 116.8 102.8 101.7 167.2 209.3 37.6 23.8 12.3 K 8574 19914 22372 11975 16574 36944 35894 35140 10953 22248 38918 48808 36842 Ba 178.8 237.0 1039 231.5 265.2 2612 713.5 794.3 201.6 673.3 207.5 1029.3 107.4 Zr 134.5 159.5 188.6 141.1 139.6 386.5 188.7 220.1 121.7 156.7 161.9 383.1 122.4 Hf 8.44 6.77 7.82 3.61 4.15 12.22 6.73 8.62 5.73 5.52 5.88 9.70 5.61 Nb 5.25 4.88 12.30 4.14 2.81 20.99 18.29 29.62 8.99 7.91 24.96 14.70 17.47 Ta 0.54 0.49 1.17 0.56 0.35 1.82 2.02 3.07 0.84 0.82 2.17 0.79 2.48 Th 7.92 9.17 20.53 4.75 5.59 15.85 20.19 30.65 15.75 11.71 46.41 13.99 18.62 U 0.70 1.21 2.88 1.15 1.45 4.54 2.44 5.65 1.56 1.14 4.26 2.19 1.91 Ti 1899 1980 3632 2053 1797 2785 1657 1829 1080 2222 464 1235 450 Cr 27.0 7.11 29.3 11.8 7.1 23.3 14.71 20.4 6.59 9.7 19.1 8.32 4.8 V 62.21 48.05 83.5 43.6 36.0 35.0 33.36 35.8 39.17 36.6 48.60 26.43 12.5 Cs 1.10 7.45 4.63 2.83 1.79 9.12 10.96 14.92 1.91 3.42 6.54 4.14 15.37 Rb/Sr 0.09 0.52 0.16 0.12 0.25 1.49 2.39 2.67 0.36 0.30 7.10 5.93 21.47 Ba/La 10.21 9.95 18.07 17.77 20.67 86.23 25.96 28.57 13.25 38.72 9.47 12.33 5.89 Zr/Hf 15.94 23.56 24.12 39.09 33.64 31.63 28.04 25.53 21.24 28.39 27.53 39.49 21.82 Nb/Ta 9.72 9.96 10.51 7.39 8.03 11.53 9.05 9.65 10.70 9.65 11.50 18.61 7.04 Th/U 11.31 7.58 7.13 4.13 3.86 3.49 8.27 5.42 10.10 10.27 10.89 6.39 9.75 Sm/Nd 0.19 0.16 0.15 0.20 0.20 0.21 0.22 0.23 0.22 0.18 0.28 0.15 0.27 表 3 涌珠泉侵入岩LA-MC-ICP-MS锆石U-Th-Pb同位素测定结果
Table 3. LA-MC-ICP-MS U-Th-Pb analyses of zircons from intrusive rocks in Yongzhuquan
测点号 含量/10-6 同位素比值 年龄/Ma Pb U 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 232Th/238U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 1.1 48 747 0.0476 0.0003 0.8228 0.0180 0.1254 0.0026 0.5237 0.0014 300 2 610 13 2034 36 1.2 15 265 0.0514 0.0004 0.3919 0.0229 0.0553 0.0031 0.3149 0.0009 323 2 336 20 424 123 1.3 68 1257 0.0517 0.0003 0.3797 0.0047 0.0533 0.0007 0.4298 0.0008 325 2 327 4 340 29 1.4 82 1414 0.0539 0.0003 0.4010 0.0054 0.0540 0.0008 0.3883 0.0012 338 2 342 5 369 32 1.5 15 270 0.0524 0.0003 0.3907 0.0145 0.0541 0.0020 0.3986 0.0007 329 2 335 12 376 83 1.6 24 406 0.0528 0.0003 0.3913 0.0090 0.0537 0.0012 0.5143 0.0006 332 2 335 8 359 52 1.7 25 355 0.0611 0.0004 0.7204 0.0245 0.0856 0.0027 0.4059 0.0021 382 3 551 19 1328 62 1.8 18 324 0.0537 0.0003 0.3944 0.0142 0.0533 0.0019 0.3518 0.0007 337 2 338 12 341 80 1.9 110 2838 0.0332 0.0002 0.5290 0.0054 0.1154 0.0012 0.3843 0.0009 211 1 431 4 1886 18 1.10 17 241 0.0696 0.0004 0.5562 0.0145 0.0580 0.0015 0.3425 0.0015 434 2 449 12 529 56 1.11 19 336 0.0528 0.0003 0.3951 0.0121 0.0542 0.0016 0.4508 0.0012 332 2 338 10 380 68 1.12 46 835 0.0506 0.0003 0.3661 0.0063 0.0525 0.0009 0.5133 0.0005 318 2 317 5 307 39 1.13 43 785 0.0529 0.0003 0.3937 0.0057 0.0539 0.0008 0.3988 0.0033 333 2 337 5 369 32 1.14 31 618 0.0459 0.0003 0.3411 0.0075 0.0539 0.0012 0.6120 0.0041 289 2 298 7 366 49 1.15 36 665 0.0531 0.0003 0.3896 0.0068 0.0532 0.0010 0.3708 0.0007 333 2 334 6 338 41 1.16 119 1587 0.0728 0.0004 0.6033 0.0065 0.0601 0.0007 0.3508 0.0004 453 3 479 5 609 24 1.17 40 725 0.0520 0.0003 0.3785 0.0092 0.0528 0.0013 0.4805 0.0013 327 2 326 8 320 55 1.18 82 1584 0.0529 0.0003 0.3940 0.0046 0.0541 0.0006 0.2349 0.0005 332 2 337 4 373 25 1.19 16 330 0.0532 0.0003 0.4990 0.0179 0.0680 0.0024 0.0628 0.0001 334 2 411 15 869 74 1.20 21 383 0.0527 0.0003 0.3959 0.0097 0.0545 0.0013 0.4631 0.0021 331 2 339 8 391 52 1.21 25 337 0.0738 0.0004 0.6657 0.0137 0.0654 0.0014 0.3342 0.0006 459 3 518 11 786 43 1.22 28 840 0.0276 0.0002 0.2516 0.0053 0.0660 0.0013 1.0189 0.0022 176 1 228 5 807 43 1.23 9 168 0.0527 0.0004 0.3907 0.0234 0.0538 0.0032 0.5584 0.0017 331 2 335 20 363 134 1.24 15 359 0.0385 0.0002 0.2764 0.0118 0.0521 0.0022 0.6378 0.0020 243 1 248 11 291 96 1.25 41 755 0.0535 0.0003 0.3952 0.0062 0.0536 0.0009 0.4879 0.0004 336 2 338 5 354 36 -
[1] 左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990.
[2] 穆治国, 刘驰, 黄宝玲, 等.甘肃北山地区同位素定年与构造岩浆热事件[J].北京大学学报(自然科学版), 1992, 28(4):486-497. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199204015.htm
[3] 王谐, 李迎香, 左介辞, 等.北山地区花岗岩类岩石的初步研究[J].甘肃地质, 1988, 9:1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ198900000.htm
[4] 梅华林, 李惠民, 陆松年, 等.甘肃柳园地区花岗质岩石时代及成因[J].岩石矿物学杂志, 1999, 18(1):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW901.002.htm
[5] 修群业.甘肃北山地区花岗岩类地球化学特征及大地构造意义[J].前寒武纪研究进展, 1999, 22(1):31-39. http://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ199901003.htm
[6] 王涛.花岗岩研究与大陆动力学[J].地学前缘, 2000, 7(S1):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2000S2020.htm
[7] 聂凤军, 江思宏, 白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002.
[8] 江思宏, 聂凤军, 陈文, 等.北山明水地区花岗岩时代的确定及其地质意义[J].岩石矿物学杂志, 2003, 22(2):377-387. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200302000.htm
[9] 何世平, 周会武, 任秉琛, 等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005, 38(8):6-15. http://youxian.cnki.com.cn/yxdetail.aspx?filename=CJXB20161230000&dbname=CAPJ2015
[10] 余吉远, 李向民, 梁积伟, 等.甘新蒙北山地区古生代构造演化研究[J].新疆地质, 2012, 30(2):205-209. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201202021.htm
[11] 胡新茁, 赵国春, 胡新悦, 等.内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义[J].地质通报, 2015, 34(2/3):425-436. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2015020318&journal_id=gbc
[12] 王立社, 杨建国, 谢春林, 等.甘肃北山火石山哈尔根头口布花岗岩年代学、地球化学及其地质意义[J].地质学报, 2009, 83(3):107-111. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903008.htm
[13] 夏林圻, 李向民, 夏祖春, 等.天山石炭-二叠纪大火成岩省裂谷火山作用与地幔柱[J].西北地质, 2006, 39(1):1-49. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200601001.htm
[14] 夏林圻, 张国伟, 夏祖春, 等.天山古生代洋盆开启、闭合时限的岩石学约束[J].地质通报, 2006, 21(2):55-62. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20020220&journal_id=gbc
[15] 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1):22-28. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201401011.htm
[16] Ewart A. The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks with special reference to the andesitic-basaltic compositional range[M]. New York:John wile and Sons, 1982:25-95.
[17] Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area[J]. Northern Turkey Contrib. Mineral Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745
[18] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42:313-345.
[19] 李怀坤, 耿建珍, 郝爽, 等.用激光烧蚀多接受器等离子质谱仪(LA-MC-ICP-MS)测定锆石U-Pb同位素年龄的研究[J].矿物学报, 2009, 28(增刊):600-601. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206005.htm
[20] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductinvely coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017
[21] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51:537-571. https://academic.oup.com/petrology/article/51/1-2/537/1463381/Continental-and-Oceanic-Crust-Recycling-induced
[22] Ludwig K P. User's manual for Isoplot/Ex version3.00/A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.
[23] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[24] 吴元保, 郑水飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
[25] Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution[M]. London:Blackwell, 1985:57-72.
[26] 李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社, 1992:178-181.
[27] 陈德潜, 陈刚.实用地球化学[M].北京:冶金工业出版社, 1990:226-242.
[28] 左国朝, 李茂松.甘肃北山地区早古生代岩石圈形成与演化[M].兰州:甘肃科学技术出版社, 1996:1-93.
[29] Brown G G. Calcalkaline intrusive rocks:their diversity, evolu-tion, and relation to volcanic arcs[C]//Thorpe R S. Andesites. New York:John Wiley & Sons, 1982:437-461.
① 甘肃省地质矿产勘查开发局. 中华人民共和国区域地质测量报告: 路井幅(K-47-XXII). 1977.
② 河北省区域地质矿产调查研究所. 内蒙古1: 5万旱山、小尘包、望京山、涌珠泉幅区域地质矿产调查报告. 2015.
-