中国地质科学院地质力学研究所
中国地质学会
主办

植被覆盖地区的高光谱油气勘探技术研究现状

李倩倩, 许宁. 植被覆盖地区的高光谱油气勘探技术研究现状[J]. 地质力学学报, 2015, 21(2): 142-150.
引用本文: 李倩倩, 许宁. 植被覆盖地区的高光谱油气勘探技术研究现状[J]. 地质力学学报, 2015, 21(2): 142-150.
LI Qian-qian, XU Ning. CURRENT STATUS OF HYPERSPECTRAL TECHNIQUES FOR OIL AND GAS EXPLORATION IN VEGETATION COVERING AREA[J]. Journal of Geomechanics, 2015, 21(2): 142-150.
Citation: LI Qian-qian, XU Ning. CURRENT STATUS OF HYPERSPECTRAL TECHNIQUES FOR OIL AND GAS EXPLORATION IN VEGETATION COVERING AREA[J]. Journal of Geomechanics, 2015, 21(2): 142-150.

植被覆盖地区的高光谱油气勘探技术研究现状

  • 基金项目:
    中国地质调查局地质调查项目"地质勘查遥感系统集成与综合应用示范"(1212011120226)
详细信息
    作者简介: 李倩倩, 助理研究员, 主要研究方向为遥感影像预处理与产品生产
  • 中图分类号: TE19

CURRENT STATUS OF HYPERSPECTRAL TECHNIQUES FOR OIL AND GAS EXPLORATION IN VEGETATION COVERING AREA

  • 高光谱遥感油气勘探技术利用油气微渗漏所致的地表蚀变矿物异常和地植物异常在光谱上的异常表现提取油气微渗漏信息, 是油气勘探的辅助手段。针对高光谱遥感油气勘探技术在植被覆盖区应用中存在的植被遮挡地表真实情况的问题开展研究, 总结相关领域的国内外研究现状, 指出其存在的问题, 提出了与植被反射率相关的指数作为油气微渗漏的指示标志, 确定了适用于植被覆盖区的高光谱遥感油气微渗漏信息大面积普查的工作流程, 研究成果可为建立更加广泛、适用的高光谱遥感油气勘探模式提供新的参考依据。

  • 加载中
  • 图 1  绿色植被典型反射光谱曲线

    Figure 1. 

    图 2  可见光和近红外波段叶片反射率光谱影响因素

    Figure 2. 

    图 3  实验室模拟烃类渗漏环境[15]

    Figure 3. 

    图 4  油气宏观渗漏[16]

    Figure 4. 

    图 5  油气渗漏点周围植被可视症状明显[4]

    Figure 5. 

  • [1]

    Mouat D A, Lin Shudao. Vegetation response of geochemical status[J]. Remote Sensing Information, 1988, (4): 37~38.

    [2]

    Zhang Yongjiang. Studies on passive sensing of plant chlorophyll fluorescence and application of stress detection[D]. Hangzhou: Zhejing University, 2006.

    [3]

    Luo Ya, Xu Jianhua, Yue Wenze. Research on vegetation indices based on the remote sensing images[J]. Ecologic Science, 2005, 24(1): 75~79. http://en.cnki.com.cn/Article_en/CJFDTOTAL-STKX200501022.htm

    [4]

    Yang H, Zhang J, van der Meer F, et al. Geochemistry and field spectrometry for detecting hydrocarbon microseepage [J]. Terra Nova, 1998, 10 (5): 231~235. doi: 10.1046/j.1365-3121.1998.00196.x

    [5]

    He Zaicheng, Lv Huiping, Wang Yunpeng, et al. Simulating experiment on ecological and spectral changes of three kinds of plants caused by hydrocarbon microseepage[J]. Bullutin of Mineralogy Petrology and Geochemistry, 1996, 15(2): 94~96. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH602.006.htm

    [6]

    Cao Wengzhong, Zhang Fenglin, Li Ziping, et al. The effect of crude oil upon grasslands vegetation[J]. Journal of Environmental Protection for Oil and Gas Fields, 1997, 7(3): 28~32. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQTB199703007.htm

    [7]

    Smith K L, Steven M D, Colls J J. Use of hyperspectral derivatives ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote Sensing of Environment, 2004, 92(2): 207~217. doi: 10.1016/j.rse.2004.06.002

    [8]

    Smith K L, Steven M D, Colls J J. Spectral responses of pot-grown plants to displacement of soil oxygen[J]. International Journal of Remote Sensing, 2004, 25(20): 4395~4410. doi: 10.1080/01431160410001729172

    [9]

    Smith K L, Steven M D, Colls J J. Plant spectral responses to gas leaks and other stresses[J]. International Journal of Remote Sensing, 2005, 26(10): 4067~4081. http://www.tandfonline.com/doi/abs/10.1080/01431160500165625?journalCode=tres20

    [10]

    Noomen F M, Skidmore A K, van der Meer F D, et al. Continuum removed band depth analysis for detecting the effects of natural gas, methane and ethane on maize reflectance[J]. Remote Sensing of Environment, 2006, 105(3): 262~270. doi: 10.1016/j.rse.2006.07.009

    [11]

    Noomen F M, Smith K L, Colls J J, et al. Predicting soil oxygen concentrations using indices based on hyperspectral reflectance of maize and wheat canopies[J]. International Journal of Remote Sensing, 2009, 30(2): 481~497. doi: 10.1080/01431160802339431

    [12]

    Li Lin, Ustin S L, Lay M. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico[J]. Remote Sensing of Environment, 2005, 94(1): 1~16. doi: 10.1016/j.rse.2004.08.010

    [13]

    van der Werff H M A, Noomen M F, van der Meijde M, et al. Use of hyperspectral remote sensing to detect hazardous gas leakage from pipelines[C]//Bochenek Z. New developments and challenges in remote sensing. Rotterdam: Millpress, 2007: 707~715.

    [14]

    Noomen M F, van der Werff H M A, van der Meer F D. Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[J]. Ecological Informatics, 2012, (8): 55~64. http://www.sciencedirect.com/science/article/pii/S1574954112000039

    [15]

    Hese S, Schmullius C. High spatial resolution image object classification for terrestrialoil spill contamination mapping in West Siberia[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, (11): 130~141. http://www.sciencedirect.com/science/article/pii/S0303243408000895

    [16]

    Noomen M F, Skidmore A K, van der Meer F D. Detecting the influence of gas seepage on vegetation, using hyperspectral remote sensing[C]// The 3rd EARSel Workshop on Imaging Spectroscopy, 2003: 252~256.

  • 加载中

(5)

计量
  • 文章访问数:  246
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2014-12-08
刊出日期:  2015-06-25

目录