中国地质科学院地质力学研究所
中国地质学会
主办

祁连山玉石沟橄榄岩显微构造特征及演化

杨艳, 杨波, 张宏远. 祁连山玉石沟橄榄岩显微构造特征及演化[J]. 地质力学学报, 2013, 19(3): 275-286.
引用本文: 杨艳, 杨波, 张宏远. 祁连山玉石沟橄榄岩显微构造特征及演化[J]. 地质力学学报, 2013, 19(3): 275-286.
YANG Yan, YANG Bo, ZHANG Hong-yuan. MICROTECTONIC FEATURES AND EVOLUTION OF THE YUSHIGOU PERIDOTITE ROCK FROM THE QILIANSHAN MOUNTAIN[J]. Journal of Geomechanics, 2013, 19(3): 275-286.
Citation: YANG Yan, YANG Bo, ZHANG Hong-yuan. MICROTECTONIC FEATURES AND EVOLUTION OF THE YUSHIGOU PERIDOTITE ROCK FROM THE QILIANSHAN MOUNTAIN[J]. Journal of Geomechanics, 2013, 19(3): 275-286.

祁连山玉石沟橄榄岩显微构造特征及演化

  • 基金项目:
    国家自然科学基金重点项目(41230311);中国地质调查局地质调查项目(1212011121188)
详细信息
    作者简介: 杨艳(1991-), 女, 中国地质大学(北京)本科在读, 资源勘查(固体矿产)专业。E-mail:173102703@qq.com
    通讯作者: 张宏远, E-mail:zhanghongyuan@cugb.edu.cn
  • 中图分类号: P545

MICROTECTONIC FEATURES AND EVOLUTION OF THE YUSHIGOU PERIDOTITE ROCK FROM THE QILIANSHAN MOUNTAIN

More Information
  • 橄榄岩作为上地幔的主要成分,影响着上地幔的流变学行为,其显微构造记录了岩石形成发展过程中所经受的构造事件。通过对祁连山玉石沟橄榄岩样品的镜下显微构造观察、岩石组构测定及TEM位错分析,探讨了与变形相关的温度、围压、含水性和应变速率等因素,总结该岩石的变形机制和变形历史,并推断其形成发展时大地构造环境。研究表明,玉石沟橄榄岩产自上地幔,其变形改造经历了上地幔演化和脆-韧性变形2个阶段。上地幔演化阶段橄榄石发育明显的A型原生组构,电子背散射衍射技术(EBSD)测定的橄榄石显微组构表明,该地区橄榄岩形成于高温(>1200℃)、低应力( < 350 MPa)、低应变速率、低含水量的地幔浅部环境条件下;脆-韧性变形阶段叠加改造了原生A型组构,而发育明显的D型次生组构。橄榄石变形主控因素为动态恢复作用,普遍发育亚晶粒、消光带和扭折显微构造等相关组构,并与透射电镜下所观察到的位错排对应,同时还发育以微破裂为主的一套脆性变形组构,表现出两组共轭剪破裂和另一组张性破裂等现象,揭示出与韧性动态恢复现象一致的应力场方向指示。

  • 加载中
  • 图 1  典型橄榄石组构及其与滑移系和应力、含水量关系(据Karato等[3],略有修改)

    Figure 1. 

    图 2  祁连山—柴北缘地区地质简图

    Figure 2. 

    图 3  洋壳的组合结构[16]

    Figure 3. 

    图 4  玉石沟超基性岩体A-B地质剖面示意图(剖面位置见图 1

    Figure 4. 

    图 5  玉石沟橄榄岩的显微图像

    Figure 5. 

    图 6  橄榄岩共轭剪裂面及其受力模式图(里德尔剪切)

    Figure 6. 

    图 7  方辉橄榄岩中橄榄石晶格优先定向

    Figure 7. 

    图 8  橄榄石晶体在样品中简易定向图

    Figure 8. 

    图 9  透射电镜下橄榄岩位错组态及晶体弯曲

    Figure 9. 

    图 10  应力作用下的橄榄石晶体弯曲

    Figure 10. 

    表 1  五种LPO类型特征及其形成环境

    Table 1.  Features and formation conditions of five LPO-types

    下载: 导出CSV
  • [1]

    宋述光.北祁连山俯冲杂岩带的构造演化[J].地球科学进展, 1997, 12(4):351~365. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.007.htm

    SONG Shu-guang. Tectonic evolution of subductive complex belts in the North Qilian Mountains[J]. Advance in Earth Sciences, 1997, 12(4):351~365. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ704.007.htm

    [2]

    Chopra C N, Paterson M S. The role of water in the deformation of dunite[J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B9):7861~7876. doi: 10.1029/JB089iB09p07861

    [3]

    Karato S, Jung H, Katayama I, et al. Geodynamic significance of seismic anisotropy of the upper mantle:New insights from laboratory studies[J]. Annual Review of Earth and Planetary Sciences, 2008, 36:59~95. doi: 10.1146/annurev.earth.36.031207.124120

    [4]

    Jung H, Karato S. Water-induced fabric transitions in olivine[J]. Science, 2001, 293(5534):1060~1063.

    [5]

    Jung H, Katayama I, Jiang Z, et al. Effect of water and stress on the lattice-preferred orientation of olivine[J]. Tectonophysics, 2006, 421(1-2):1~22. doi: 10.1016/j.tecto.2006.02.011

    [6]

    Bystricky M, Kunze K, Burlini L, et al. High shear strain of olivine aggregates:Rheological and seismic consequences[J]. Science, 2000, 290(5496):1564~1567. doi: 10.1126/science.290.5496.1564

    [7]

    Nicolas A, Christensen N I. Formation of anisotropy in upper mantle peridotites:A review[C]//Fuchs K, Froideveaux C. Composition, structure and dynamics of the lithosphere-asthenosphere system. Washington DC:American Geophysical Union, 1987:407~433.

    [8]

    Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite:Single-crystal rheological properties at mantle pressure and temperature[J]. American Mineralogist, 2007, 92(8/9):1436~1445.

    [9]

    Mainprice D, Eacute A, Tommasi A, et al. Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle[J]. Nature, 2005, 433(7027):731~733. doi: 10.1038/nature03266

    [10]

    Couvy H, Frost D J, Heidelbach F, et al. Shear deformation experiments of forsterite at 11 GPa-1400℃ in the multianvil apparatus[J]. European Journal of Mineralogy, 2004, 16(6):877~889. doi: 10.1127/0935-1221/2004/0016-0877

    [11]

    Zhang S, Karato S, Fitz Gerald J, et al. Simple shear deformation of olivine aggregates[J]. Tectonophysics, 2000, 316(1/2):133~152.

    [12]

    宋述光, 牛耀龄, 张立飞, 等.大陆造山运动从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报, 2009, 25(9):2067~2077. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htm

    SONG Shu-guang, NIU Yao-ling, ZHANG Li-fei, et al. Time constraints on orogenesis from oceanic subduction to continental subduction, collision, and exhumation:An example from North Qilian and North Qaidam HP-UHP belts[J]. Acta Petrologica Sinica, 2009, 25(9):2067~2077. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htm

    [13]

    肖序常, 陈国铭, 朱志直.祁连山古蛇绿岩带的地质构造意义[J].地质学报, 1978, (4):282~283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197804002.htm

    XIAO Xu-chang, CHEN Guo-ming, ZHU Zhi-zhi. A preliminary study on the tectonics of ancient ophiolites in the Qilian Mountain, Northwest China[J]. Acta Geologica Sinica, 1978, (4):282~283. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197804002.htm

    [14]

    侯青叶, 赵志丹, 张宏飞, 等.北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义[J].中国科学D辑:地球科学, 2005, 35(8):710~719. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508002.htm

    HOU Qing-ye, ZHAO Zhi-dan, ZHANG Hong-fei, et al. Indian-MORB-type isotopic composition and geological significance of Yushigou ophiolite in the North Qilian[J]. Science in China Serial D:Earth Sciences, 2005, 35(8):710~719. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508002.htm

    [15]

    Song S G, Zhang L F, Niu Y, et al. Eclogite and carpholite-bearing meta-pelite in the North Qilian suture zone, NW China:Implications for Paleozoic cold oceanic subduction and water transport into mantle[J]. Journal of Metamorphic Geology, 2007, 25:547~563. doi: 10.1111/jmg.2007.25.issue-5

    [16]

    Schieber J. Evolution of Continents and Oceans[EB/OL].[2013-03-24]. http://www.indiana.edu/~g105lab/1425chap13.htm.

    [17]

    洛长义.玉石沟含铬超基性岩体橄榄石矿物应力特征及地质意义[J].西北地质, 1981, (4):36~39. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198104003.htm

    LUO Chang-yi. Stress characteristics and geological significance of olivine mineral in Yushigou chromium-containing ultramafic rock[J]. Northwestern Geology, 1981, (4):36~39. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI198104003.htm

    [18]

    曹淑云, 刘俊来.岩石显微构造分析现代技术——EBSD技术及应用地球科学进展[J].地球科学进展, 2006, 21(10):1091~1096. doi: 10.3321/j.issn:1001-8166.2006.10.014

    CAO Shu-yun, LIU Jun-lai. Modern techniques for the Analysis of rock microstructure EBSD and its application[J]. Advances in Earth Science, 2006, 21(10):1091~1096. doi: 10.3321/j.issn:1001-8166.2006.10.014

    [19]

    Carter N L, Avé Lallemant H G. High temperature flow of dunite and peridotite[J]. Geological Society of America Bulletin, 1970, 81(8):2181~2202. doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2

    [20]

    Ismail W B, Mainprice D. An olivine fabric database:An overview of upper mantle fabrics and seismic anisotropy[J]. Tectonophysics, 1998, 296(1):145~157.

    [21]

    孙平, 路凤香.下扬子地区若干上地幔橄榄岩的显微构造研究[J].现代地质, 1994, 8(1):57~64. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ401.007.htm

    SUN Ping, LU Feng-xiang. Microstructures of some peridotites from upper mantle in Low Yangtze Area[J]. Geoscience, 1994, 8(1):57~64. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ401.007.htm

    [22]

    Li C S, Thakurta J, Ripley E M. Low-Ca contents and kink-banded textures are not unique to mantle olivine:evidence from the Duke Island Complex, Alaska[J]. Mineralogy and Petrology, 2012, 104(3-4):147~153. doi: 10.1007/s00710-011-0188-0

  • 加载中

(10)

(1)

计量
  • 文章访问数:  503
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2013-03-24
刊出日期:  2013-09-25

目录