OBSERVATION AND DETERMINATION OF THE NANO-SIZED PARTICLE LAYER IN ROCKS AND ITS GEOLOGICAL SIGNIFICANCE
-
摘要:
纳米粒子具有个体极小(≤ 100nm), 大小均一, 多元物质和功能繁多的特点。岩石剪切滑移面纳米粒子层最早发现于美国圣安德列斯断裂带的花岗质糜棱岩中, 后相继在国内外一些地区的不同岩类中观察到。在剪切滑动作用下, 具有圆度和球度的纳米粒子可被变异, 并形成层状结构和各种构造型式。对岩石中纳米粒子层的成因有着不同的观点, 我们倾向于剪切摩擦的主导作用, 纳米粒子层可称谓摩擦-粘性薄层带。纳米级尺度粒子的力学、物理和化学效应是多种的、新奇的, 因此, 岩石纳米粒子层的研究有着重要的理论和实践意义。目前有关方面的研究工作, 国内外都处在起步阶段。
Abstract:Nano-sized particles are extremely tiny (≤ 100 nm)and homogeneous in size, consist of polybasic materials and have multiple functions. The nano-sized particle layer of shear slip plane in rocks was firstly discovered in granitic mylonite of the San Andreas Fault Zone, United States, and later this phenomenon was found in different rock types in some areas both at home and abroad. Under actions of shear slip, nano-sized particles with roundness and sphericity can become alien ones, and those alien particles may form layered textures and various structural types. There are different views about the genesis of nano-sized particle layers in rocks, and we incline to the view that shear friction plays a dominant role and that the nano-sized particle layer may be called a frictional-viscous thin layer. The mechanical, physical and chemical effects of nano-sized particles are multiple and novel and the study of nano-sized particle layers of rocks has great theoretical and practical significance without doubt. At present the study has just started both at home and abroad.
-
Key words:
- shear slip plane /
- nano-sized layer /
- rock /
- layered texture /
- structural type
-
-
图 4b 图 4a (左边)局部放大(ab面)(Photo 4585)
Figure 4b.
-
[1] Ting, CC. Importance of Baxic Research in the development of Technology[C]. World Famous Scientists Forum, Nanjing University, 2002, 1~ 3.
[2] 纳米技术手册编委会(日), 王鸣阳, 郭成言, 葛璜, 等译. 纳米技术手册[M]. 北京: 科学出版社, 2005, 1~849.
[3] Hemenway CL, Fullam EF, Phillips L.Nanometeorities[J].Nature, 1961, 190:897~ 898. doi: 10.1038/190897a0
[4] Bakken BM, Hochella MF, Marshall Jr AF.High-resolution microscopy of gold in unoxiidized ore from the Carlin mine, Nevada[J].Econ Geol, 1989, 84 (1):171~ 179. doi: 10.2113/gsecongeo.84.1.171
[5] Taran A, Bemard A, Carilanes JC, et al.Native gild in mineral precipaties from high temperature volcanic gases of Colima volcano, Mexico[J].Appl Geochem, 2000, 15:337~ 346. doi: 10.1016/S0883-2927(99)00052-9
[6] Olgard D, Brac W.The microstructure of gouge from a mining-induced seismic shear zone[J].Inter Journal of Rock Mechanics and Mining Science and Geomechanical Abstracts, 1983, 20:11~ 19. doi: 10.1016/0148-9062(83)91610-8
[7] Kanaori Y.Surface texture of intrafault quartz grains as an indicator of fault movement[J].Catena, 1985, 12:271~ 279. doi: 10.1016/S0341-8162(85)80025-4
[8] Chester J, Chester F, Kronenberg A.Fracture surface energy of the Punch bow l fault, San Andreas system[J].Nature, 2005, 437:133~ 136. doi: 10.1038/nature03942
[9] Wilson B, Dewers T, Reches Z, et al.Particle size and energetics of gouge from earthquake zones[J].Nature, 2005, 434:749~ 752. doi: 10.1038/nature03433
[10] Wang CY, Sun Y, Oriented microfracture in Cajon Pass Drill Cores:Stress field near the San Andreas fault[J].J Geophy Res, 1990, 95 (B7):11135~ 11142. doi: 10.1029/JB095iB07p11135
[11] Ge HP, Sun Y, Lu XC, et al.Discovery and analysis ultra-micro grinding grain texture in slipping lamellae of ductile-brittle zone[J].Sci China, Ser D, Earth Sci, 2004, 47 (3):265~ 271. doi: 10.1360/02YD0159
[12] Sun Y, Lu XC, Shu LS, et al.Observation of ultra-microstructure of fault rocks in shearing-sliding zones[J].Prog Natural Sci, 2005, 15 (5):430~ 434. doi: 10.1080/10020070512331342350
[13] Perrtt S, Roberts M.Flexural-slip structure in the Bushveled Complex South Africa[J].Journal of Structural Geology, 2007, 29(9):1422~ 1429. doi: 10.1016/j.jsg.2007.06.008
[14] Zheng Y, Wang T, Ma M, et al.Maximum effective moment criferion and the origin of low-angle normal faults[J].Journal of Structural Geology, 2004, 26:271~ 285. doi: 10.1016/S0191-8141(03)00079-8
[15] 张逸昆.共轭剪切角的流变学意义[J].地质力学学报, 2007, 13 (3):212~ 219. doi: 10.3969/j.issn.1006-6616.2007.03.002 http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20070302&journal_id=dzlxxb
[16] Sun Yan, Shu Liangshu, Lu Xiancai, et al.Recent progress in studies on the nano-sized particle layer in rock shear planes[J].Progress in Natural Science, 2008 (in Press). http://cn.bing.com/academic/profile?id=17005abdeac02970ba8ae5a2491e4f2a&encoded=0&v=paper_preview&mkt=zh-cn
[17] Sun Yan, Shu Liangshu, Lu Xiancai, et al.Acomparative study of Natural and experimental Nano-sized grinding grain textures in rocks[J].Chinese Science Bulletin, 2008 (in Press). http://cn.bing.com/academic/profile?id=5b9256c7d486cdffffad73361082ad73&encoded=0&v=paper_preview&mkt=zh-cn
[18] Aristizabal-ochoa JD.Stability of beam-columns under combined conservative and nanoservative forces:Effects of semi rigid connections[J].J Engin Mechan, 2005, 5:473~ 482.
[19] Stewert M, Holdsworth RE, Strachan RA.Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crystal-scale fault:Insights from the Great Glen Fault Zone[J].Scotland.Journal of Structural Geology, 2000, 22(5):543~ 560. doi: 10.1016/S0191-8141(99)00164-9
[20] 李四光.地质力学概论[M].北京:科学出版社, 1973, 112.
[21] 郭建, 孙岩, 朱文斌, 等.油气封盖层中涂抹效应的成因机制新解[J].南京大学学报(自然科学版), 2002, 38(6):766~ 770. doi: 10.3321/j.issn:0469-5097.2002.06.005
[22] Oachi T, Aiming L, Allen C, et al.The Chi-Chi (Taiwan)earthquake:Earthquake fault and strong motions[J].Bull Seismo Soci Am, 2001, 91:966~ 976. https://www.researchgate.net/publication/250074685_The_1999_Chi-Chi_Taiwan_Earthquake_Earthquake_Fault_and_Strong_Motions
[23] Aiming L, Bihong F, Jianming G, et al.Co-Seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Cenral Kunlun Earthquake[J].Science, 2001, 296:2015~ 2017. http://cn.bing.com/academic/profile?id=2b96d16a9e299681652b9ced4671a2e8&encoded=0&v=paper_preview&mkt=zh-cn
-