RHEOLOGIC IMPLICATIONS OF CONJUGATE SHEAR ANGLES
-
摘要:
基于最大侧向位移速率假设(Maximum lateral displacement rate, 简称MLDR), 本文提出了一个关于共轭剪切角的流变学理论。根据这个假设, 无论是压应力或张应力作用在一个固体上, 剪切带总是沿着使得被剪切带分割的块体的侧向位移速率为最大的方向发育。换句话说, 如果平行于驱动应力的纵向位移速率或驱动应力的大小被看作为边界条件, 那些被剪开的块体总是以最快的可能速度从两侧挤出或饲入变形区。该理论的优点是:剪切位移的方向是可逆的。因此, 同一剪切带可以在挤压和拉张应力体系中活动。在各向同性固体中, 剪切带的方位和驱动应力方向之间的夹角θ由方程式 tan θ=
确定, 其中n为描述该固体塑性流动的幂指数。-
关键词:
- 共轭剪切角 /
- 最大侧向位移速率假设 /
- 流变学
Abstract:A rheologic theory on conjugate shear angles is proposed based on the maximum lateral displacement rate (MLDR)hypothesis, which states that when compressive or tensile stress is applied to a solid, shear bands are formed in the solid in the orientations that give rise to the maximum lateral displacement rates of the blocks divided by the shear bands.In other words, it is postulated that the sheared blocks are laterally extruded from or fed into the deformation domain at the greatest possible velocity.The merit of this theory is:the sense of shear displacement is reversible.Hence, the same shear bands can be activated in both compressive and tensile stress regimes.In an isotropic model, the angle θ between the driving stress and the shear bands formed is determined by the equation, tan θ=
, where n is the power-law index of flow.-
Key words:
- conjugate shear angle /
- maximum lateral displacement rate /
- rheology
-
-
图 1 (a) 粗实线描绘地下1000m深处的矿柱上观察到的共轭剪切带, 其共轭角为109°和110°(Boulby煤矿, 克莱福兰, 英国)。垂直虚线指示挖矿用的铲子留下的沟痕, 它们已被沿着剪切带错开(据Watterson, 1999)[1]。(b)用于模拟伸展构造的砂箱实验中观察到的共轭剪切带, 砂层厚为3cm, 用常拉伸速率5×10-3 cm/sec, 通过一可伸长的弹性底层拉至46%的总伸展量。模拟实验的尺度比设计为约10-5, 模型中的1cm代表自然界中的1km。当伸展量超过20%时, 砂箱顶面出现图中所示的共轭剪切带, 测得其共轭角为109°(据Bahroudi et al., 2003)[3]。(c)加拿大西大省晚太古代花岗绿岩中发育的共轭剪切带方位的玫瑰图, 其共轭角也为109°(据Park, 1981)[4]。
Figure 1.
-
[1] Watterson J.The future of failure:stress or strain?[J].Journal of Structural Geology, 1999, 21:939~948. doi: 10.1016/S0191-8141(99)00012-7
[2] Ramsay JG.Shear zone geometry:a review[J]. Journal of Structural Geology, 1980, 2:83~89. doi: 10.1016/0191-8141(80)90038-3
[3] Bahroudi A, Koyi HA, Talbot CJ.Effect of ductile and frictional decollements on style of extension[J].Journal of Structural Geology, 2003, 25:1401~1423. doi: 10.1016/S0191-8141(02)00201-8
[4] Park RG.Shear-zone deformation and bulk strain in granite-greenstone terrain of the Western Superior Provinces, Canada[J]. Precambrian Research, 1981, 14:31~47. doi: 10.1016/0301-9268(81)90034-6
[5] Robertson EC. Viscoelasticity of Rocks. In: State of Stress in the Earth' s Crust, W. R. Judd (ed. )[M]. New York: Elsevier, 1964. 181~233.
[6] Zhang Y. Rheologic implications of the geometry of ductile shear zones. In: Maximum Lateral Displacement Rate Theory, Chapter 2. Nanjing, 2005, 123p.
[7] Zhang Y. Rheologic implications of the geometry of low-angle normal faults. In: Maximum Lateral Displacement Rate Theory, Chapter 3. Nanjing, 2006, 123p.
-