碳中和目标下的锂矿产业创新及颠覆性技术

吴西顺, 王登红, 杨添天, 姚翔, 张惠, 邵明娟, 张炜, 刘丹. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022, (2): 1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
引用本文: 吴西顺, 王登红, 杨添天, 姚翔, 张惠, 邵明娟, 张炜, 刘丹. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022, (2): 1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
Wu Xishun, Wang Denghong, Yang Tiantian, Yao Xiang, Zhang Hui, Shao Mingjuan, Zhang Wei, Liu Dan. Lithium Mining Industry Innovation and Disruptive Technology under the Goal of Carbon Neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001
Citation: Wu Xishun, Wang Denghong, Yang Tiantian, Yao Xiang, Zhang Hui, Shao Mingjuan, Zhang Wei, Liu Dan. Lithium Mining Industry Innovation and Disruptive Technology under the Goal of Carbon Neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022, (2): 1-8. doi: 10.3969/j.issn.1000-6532.2022.02.001

碳中和目标下的锂矿产业创新及颠覆性技术

详细信息
    作者简介: 吴西顺(1975-),男,博士,副研究员,主要从事矿产资源、矿业科技等研究工作
  • 中图分类号: TD353

Lithium Mining Industry Innovation and Disruptive Technology under the Goal of Carbon Neutrality

  • 锂矿无疑在当今和未来的新能源结构中占有重要地位,鉴于碳中和目标的紧迫性,世界各国主流机构都在加紧研究绿色减碳计划和实现路径。受全球强劲需求特别是新能源汽车的巨大拉动,锂矿产业发展十分迅猛,主要表现为以下几个特点:(1)全产业链兴起,探采选冶联盟化,上下游一体化;(2)资本竞争激烈,并购频繁;(3)受碳中和目标驱动,技术创新发展迅速。受国内碳中和碳达峰政策的推动,锂矿全产业链的技术创新主要呈现出以下趋势:重视不同类型锂矿的碳排放评价与碳中和方案研发;打破探采选冶研发、生产和利用环节壁垒,数据实现优化与共享;采选冶技术向绿色高效转型,火法向湿法转型,先进传感器等AI技术得以大范围使用。矿石锂矿和卤水包括但不限于盐湖等多元化的锂矿资源正在锐意推进绿色开发和利用。人工智能、先进传感器以及一些颠覆性技术会越来越多地出现在锂矿资源的开发利用中。中国具有深远的世界市场影响力,中国政府的碳中和目标具有世界标志性,中国企业在人工智能、先进传感技术以及新技术革命中已经崭露头角。先进技术的国际垄断将在中国技术的积极参与下令世界改观,从而改善全球气候问题和居住环境。

  • 加载中
  • 图 1  充电电池锂市场细分趋势

    Figure 1. 

    图 2  硬岩锂和盐湖锂产业的碳排放强度对比

    Figure 2. 

    图 3  SiLeach® 工艺流程

    Figure 3. 

    表 1  不同来源锂产品的温室气体排放、能耗和水耗比较[20]

    Table 1.  Comparison of greenhouse gas emissions, energy consumption and water consumption of lithium products from different sources

    锂来源 生产阶段 温室气体(GHG)排放 能源消耗 淡水消耗
    卤水 锂浓缩 0.08-0.18g CO2e/吨锂精矿 1300- 2800 MJ/吨锂精矿 2.95- 7.30 m3/吨锂精矿
    从锂精矿生产 Li2CO3* 2.7-3.1吨CO2e/吨Li2CO3 30,000-36,000 MJ/吨Li2CO3 15.5- 32.8 m3/吨 Li2CO3
    锂精矿生产 LiOH•H2O 6.9-7.3吨CO2e/吨LiOH•H2O 76,600- 82,900 MJ/吨LiOH•H2O 31- 50 m3/吨LiOH•H2O
    矿石 锂辉石提纯 ~0.42吨CO2e/吨锂辉石 5500 MJ/吨锂辉石 3.4 m3/吨锂辉石
    锂辉石生产Li2CO3* 20.4吨CO2e/吨Li2CO3 218,000MJ/吨Li2CO3 77 m3/吨 Li2CO3
    锂辉石生产LiOH•H2O 15.7吨CO2e/吨LiOH•H2O 187,200 MJ/吨LiOH•H2O 69 m3/吨 LiOH•H2O
    数据来源:智利与澳大利亚。
    下载: 导出CSV
  • [1]

    IPCC. Summary for Policymakers[R]. Geneva: IPCC, 2021.

    [2]

    Friedlingstein P, Jones M W, O’Sullivan M, et al. Global carbon budget 2019[J]. Earth Syst Sci Data, 2019, 11(4):1783-1838. doi: 10.5194/essd-11-1783-2019

    [3]

    李采, 郭朝斌, 李霞, 等. 地质调查助力碳达峰碳中和目标实现的路径浅析[J]. 中国地质调查, 2021, 8(4):1-12.

    LI C, GUO C B, LI X, et al. Analysis of the role of geological survey on the roadmap design for realizing the goal of carbon emissions peak and carbon neutrality[J]. Geological Survey of China, 2021, 8(4):1-12.

    [4]

    Roskill. 锂: 2031年前景展望 (第18版)[R], 2021.

    Roskill. Lithium: Outlook for 2031 (18th Edition) [R], 2021.

    [5]

    王登红, 吴西顺. 21世纪的能源金属——锂的奥秘[J]. 国土资源科普与文化, 2017(4):22-27.

    WANG D H, WU X S. Energy metal in the 21st century—the mystery of lithium[J]. Science and Culture of Land and Resources, 2017(4):22-27.

    [6]

    王乃银. 令人垂青的金属能源[J]. 今日科技, 1989(9):32.

    WANG N Y. Favorable metal energy[J]. Today's Science and Technology, 1989(9):32.

    [7]

    徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    XU Z Z, LIANG J L, LI H, et al. Research status and prospects of Lithium Extraction from Lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37. doi: 10.3969/j.issn.1000-6532.2021.05.005

    [8]

    李成秀, 程仁举, 刘星, 等. 我国锂辉石选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    LI C X, CHENG R J, LIU X, et al. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8. doi: 10.3969/j.issn.1000-6532.2021.05.001

    [9]

    张忠如, 杨勇, 刘汉三. 锂离子电池电极材料固体核磁共振研究进展[J]. 化学进展, 2003(1):18-24. doi: 10.3321/j.issn:1005-281X.2003.01.003

    ZHANG Z R, YANG Y, LIU H S. Research progress in solid-state nuclear magnetic resonance of electrode materials for lithium-ion batteries[J]. Progress in Chemistry, 2003(1):18-24. doi: 10.3321/j.issn:1005-281X.2003.01.003

    [10]

    Andrew E R, Bradbury A, Eades R G. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature, 1958, 182: 1659

    [11]

    Lowe I. Free induction decays of rotating solids. Phys Rev Lett, 1959, 2: 285–287

    [12]

    Grey C P, Dupre N. NMR Studies of cathode materials for lithium-ion rechargeable batteries. Chem Rev, 2004, 104: 4493–4512

    [13]

    Carlier D, Ménétrier M, Grey C, et al. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B, 2003, 67: 174103

    [14]

    Kim J, Middlemiss D S, Chernova N A, et al. Linking local environments and hyperfine shifts: A combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic Fe(III) phosphates. J Am Chem Soc, 2010, 132: 16825–16840

    [15]

    王艳, 苗红, 李欣, 等. 知识基因视角下的技术融合机会发现研究[J]. 科学学与科学技术管理, 2021, 42(7):18-34.

    WANG Y, MIAO H, LI X, et al. Research on the discovery of technology integration opportunities from the perspective of knowledge genes[J]. Science and Science and Technology Management, 2021, 42(7):18-34.

    [16]

    吴菲菲, 李一苇, 苗红, 等. 中国重点技术领域基础研究成果转化效率评估[J]. 科学学研究, 2021(5):1-14.

    WU F F, LI Y W, MIAO H, et al. Evaluation of transformation efficiency of basic research achievements in China's key technology fields[J]. Scientific Research, 2021(5):1-14.

    [17]

    吴西顺, 张炜, 邓杰, 等. 传感器驱动的智能选矿: 过去、现在和未来[J]. 矿产综合利用, 2020(5):18-26.

    WU X S, ZHANG W, DENG J, et al. Sensor-driven intelligent mineral processing: past, present and future[J]. Multipurpose Utilization of Mineral Resources, 2020(5):18-26.

    [18]

    吴西顺, 孙艳, 王登红, 等. 国际锂矿开发技术现状、革新及展望[J]. 矿产综合利用, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    WU X S, SUN Y, WANG D H, et al. International lithium mine utilization technology: current status, innovation and prospects[J]. Multipurpose Utilization of Mineral Resources, 2020(6):110-120. doi: 10.3969/j.issn.1000-6532.2020.06.019

    [19]

    Jun Lu, et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks, 9 March 2020, Materials, Nature.

    [20]

    Jarod C. Kelly, Michael Wang, Qiang Dai, Olumide Winjobi, Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries, Resources, Conservation and Recycling, Volume 174, 2021, 105762, ISSN 0921-3449.

    [21]

    陈江, 张晓琴. 颠覆性技术创新的成长过程、关键要素及基本逻辑[J]. 科学管理研究, 2021, 39(5):8-12.

    CHEN J, ZHANG X Q. The growth process, key elements and basic logic of disruptive technological innovation[J]. Scientific Management Research, 2021, 39(5):8-12.

    [22]

    Jarod C Kelly, Michael Wang, Qiang Dai, et al. Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries, Resources, Conservation and Recycling, Volume 174, 2021, 105762, ISSN 0921-3449.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1900
  • PDF下载数:  217
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
修回日期:  2022-02-28
刊出日期:  2022-04-25

目录