中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征

张效瑞, 吴柏林, 雷安贵, 杨松林, 姚璐航, 庞康, 包志安, 王苗, 郝欣, 刘明义, 李琪, 林周洋. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192
引用本文: 张效瑞, 吴柏林, 雷安贵, 杨松林, 姚璐航, 庞康, 包志安, 王苗, 郝欣, 刘明义, 李琪, 林周洋. 砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征[J]. 岩矿测试, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192
ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192
Citation: ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192

砂岩型铀矿成矿期与非成矿期黄铁矿的微区原位Pb同位素识别特征

  • 基金项目:
    陕西省自然科学基础研究计划(重点)项目(2022JZ-18);辽河油田公司科技项目(2021KJ-07-3);国家基础科学人才培养基金(XDCX2020-08);陕西省重点研发计划项目(2021KW-28)
详细信息
    作者简介: 张效瑞,硕士研究生,地质学专业。E-mail: 916070173@qq.com
    通讯作者: 吴柏林,博士,教授,研究方向为铀矿地质学、盆地有机-无机矿产相互作用等。E-mail: wbailin@126.com
  • 中图分类号: P618.11;P595

In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits

More Information
  • 砂岩型铀矿中含大量不同形态、不同阶段的黄铁矿。仅凭矿相学对黄铁矿产状及电子探针对黄铁矿形态的观察难以准确地判别成矿期、成矿前及成矿后形成的黄铁矿。而成矿期黄铁矿是铀矿床成因和形成过程的重要信息载体,对其准确识别具有特别重要的意义。以往国内外研究采用激光剥蚀电感耦合等离子体质谱(LA-MC-ICP-MS)方法分析Pb同位素,但该方法对于低含量Pb样品分析精度较低且较难获得204Pb数据。本文对铀矿石中的黄铁矿利用微区原位的手段进行更加精准的飞秒级质谱(fs-LA-MC-ICP-MS)的Pb同位素测试,发现大量黄铁矿存在Pb同位素异常,从中可能区分出成矿期与非成矿期的黄铁矿。经U-Th-Pb放射性衰变原理分析并结合黄铁矿矿相学特点可以发现,矿相学镜下明确是成矿期的黄铁矿,其206Pb/204Pb比正常克拉克值大十几倍甚至数十倍,207Pb/204Pb稍有异常,而208Pb/204Pb基本不变。矿相学中产状呈草莓状,以及铀矿物围绕其生长但未有穿插关系的非成矿期黄铁矿,其206Pb/204Pb正常;矿相学镜下难以确定形成阶段的、与铀矿物没有任何接触关系的黄铁矿,其Pb同位素没有明显的规律性。这些结果证明了利用Pb同位素异常来判断黄铁矿形成阶段的准确性。因此,利用黄铁矿微区原位Pb同位素差异,适当配合矿相学形态和产状观察,可较为精准地识别出成矿期黄铁矿。

  • 加载中
  • 图 1  黄铁矿在矿石中呈网脉状分布,矿石中未见铀矿物;黄铁矿与铀矿物没有直接接触。样号:ZKD112-96-1(测试点位置为右上图的十字,下同)

    Figure 1. 

    图 2  黄铁矿在矿石中呈草莓状分布;黄铁矿为成岩期或成矿前产物。样号:ZKD96-31-1

    Figure 2. 

    图 3  矿石中铀矿物围绕黄铁矿生长但无穿插现象;黄铁矿为成矿前产物。样号:ZKD96-31-5

    Figure 3. 

    图 4  矿石中铀矿物围绕黄铁矿生长但无穿插现象;黄铁矿为成矿前产物。样号:ZKD96-31-9

    Figure 4. 

    图 5  黄铁矿在矿石中呈网脉状分布,矿石中未见铀矿物;黄铁矿与铀矿物没有直接接触。样号:ZKN8-29-1-4

    Figure 5. 

    图 6  黄铁矿在矿石中呈胶装-环状分布,与铀矿物交集共生;黄铁矿为成矿期产物。样号:ZKB112-47-1

    Figure 6. 

    图 7  黄铁矿在矿石中呈胶装-环装分布,与铀矿物交集共生;黄铁矿为成矿期产物。样号:ZKB112-47-2

    Figure 7. 

    图 8  黄铁矿在矿石中与铀矿物交集穿插共生;黄铁矿为成矿期产物。样号:ZKD176-47-3

    Figure 8. 

    图 9  黄铁矿在矿石中与铀矿物交集穿插共生;黄铁矿为成矿期产物。样号:ZKD176-47-5

    Figure 9. 

    图 10  黄铁矿在矿石中与铀矿物交集穿插共生;黄铁矿为成矿期产物。样号:ZKN16-56-11

    Figure 10. 

    图 11  区别成矿期黄铁矿与非成矿期黄铁矿的主要标志:(a) 206Pb/204Pb比值差异较大;(b) 207Pb/204Pb比值稍有差异;(c)208Pb/204Pb比值几乎无差异

    Figure 11. 

    表 1  样品采集位置与岩性描述

    Table 1.  Location of sample collection and lithology description

    序号 钻孔号 样品号 采样位置 深度(m) 岩性描述
    1 ZKN8-29 ZKN8-29-1 纳岭沟矿床 375.59 浅灰绿色中砂岩,次疏松,含大量碳质碎屑,高矿化,矿样品位100μg/g
    2 ZKD112-47 ZKD112-47 大营矿床 581.34 灰白色粗砂岩、钙质胶结,含碳屑黄铁矿结核,遇酸起泡,矿样品位200μg/g
    3 ZKD96-31 ZKD96-31 大营矿床 669.46 浅灰绿色粗砂岩,含碳屑及黄铁矿结核,矿样品位140μg/g
    4 ZKD112-96 ZKD112-96-1 大营矿床 727.91 灰白色粉砂岩,含黄铁矿结核,碳质碎屑,致密,矿样品位40μg/g
    5 ZKN16-56 ZKN16-56-1 纳岭沟矿床 410.31 灰白色粗砂岩,含黄铁矿结核
    6 ZKD176-47 ZKD176-47 大营矿床 628.15 浅灰绿色细砂岩,含黄铁矿结核,遇酸起泡,矿化样
    下载: 导出CSV

    表 2  黄铁矿微区原位Pb同位素测试数据

    Table 2.  Pb isotope test data in in situ micro-area of pyrites

    序号 样品号 黄铁矿产状 208Pb/204Pb 误差
    (SE)
    207Pb/204Pb 误差
    (SE)
    206Pb/204Pb 误差
    (SE)
    208Pb/206Pb 误差
    (SE)
    207Pb/206Pb 误差
    (SE)
    1 ZKN
    112-96-1
    3.1节中的
    第1种情况
    37.751 0.004 15.446 0.001 19.474 0.010 1.9396 0.0010 0.7935 0.0004
    2 XINZKD
    96-31-1
    3.1节中的
    第2种情况
    37.808 0.005 18.342 0.027 49.948 0.297 0.7569 0.0045 0.3673 0.0016
    3 ZKD
    96-31-5
    3.1节中的
    第3种情况
    37.956 0.033 16.174 0.018 26.071 0.123 1.4563 0.0064 0.6213 0.0024
    4 ZKD
    96-31-9
    3.1节中的
    第3种情况
    37.551 0.111 18.343 0.088 46.393 0.770 0.8180 0.0123 0.3990 0.0046
    5 ZKD
    176-47-5
    3.1节中的
    第3种情况
    37.870 0.008 20.966 0.031 91.288 0.400 0.4162 0.0018 0.2301 0.0007
    平均 - 37.766 - 17.076 - 46.6348 - 1.2427 - 0.5452 -
    序号 样品号 黄铁矿产状 208Pb/204Pb 误差
    (SE)
    207Pb/204Pb 误差
    (SE)
    206Pb/204Pb 误差
    (SE)
    208Pb/206Pb 误差
    (SE)
    207Pb/206Pb 误差
    (SE)
    6 ZKN
    8-29-1-4
    3.1节中的
    第1种情况
    37.805 0.182 67.338 0.391 340.192 2.040 0.1096 0.0001 0.1978 0.0001
    7 ZKB
    112-47-1
    3.1节中的
    第4种情况
    38.097 0.022 81.762 0.765 651.463 7.400 0.0593 0.0009 0.1260 0.0003
    8 ZKB
    112-47-2
    3.1节中的
    第4种情况
    37.925 0.051 86.698 0.497 666.826 3.720 0.0569 0.0003 0.1307 0.0003
    9 ZKD
    176-47-3
    3.1节中的
    第5种情况
    37.704 0.021 23.880 0.096 131.677 1.480 0.2884 0.0033 0.1828 0.0014
    10 ZKN
    16-56-1
    3.1节中的
    第5种情况
    37.885 0.022 86.323 0.083 461.575 0.403 0.0821 0.0001 0.1869 0.0000
    平均 - 37.881 - 61.1612 - 450.3466 - 0.1687 - 0.1757 -
    下载: 导出CSV
  • [1]

    陈祖伊, 郭庆银. 砂岩型铀矿床硫化物还原富集铀的机制[J]. 铀矿地质, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001

    Chen Z Y, Guo Q Y. Mechanism of sulphide reduction and enrichment of uranium in sandstone-type uranium deposits[J]. Uranium Geology, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001

    [2]

    Wu B L, Qiu X W, Zhang C, et al. Geological effect of hydrocarbon dissipation and epigenetic alteration in northeast of Ordos Basin[J]. Journal of Mining and Metallurgy, 2009, 45(1): 33-38. https://scindeks-clanci.ceon.rs/data/pdf/1450-5959/2009/1450-59590901033B.pdf

    [3]

    吴柏林, 魏安军, 胡亮, 等. 内蒙古东胜铀矿区后生蚀变的稳定同位素特征及其地质意义[J]. 地质通报, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021

    Wu B L, Wei A J, Hu L, et al. Stable isotope characteristics of post-generating alteration in Dongsheng uranium mining area, Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021

    [4]

    胡亮, 吴柏林. 东胜矿床稳定同位素地球化学特征及地质意义[J]. 河北工程大学学报(自然科学版), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016

    Hu L, Wu B L. Stable isotope geochemical characteristics and geological significance of Dongsheng deposit[J]. Journal of Hebei University of Engineering (Naturcal Science Edition), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016

    [5]

    庞康, 吴柏林, 孙涛, 等. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征[J]. 中国地质, 2021, 48(3-5): 1-24.

    Pang K, Wu B L, Sun T, et al. Carbon and oxygen isotopes of carbonate rocks of sandstone-type uranium deposits in the Ordos Basin and their natural gas-water mixed fluid interaction characteristics[J]. Geology in China, 2021, 48(3-5): 1-24.

    [6]

    吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in sandstone-type uranium deposits in the northern Ordos Basin and their genetic significance[J]. Acta Geologica Sinica, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    [7]

    庞康. 鄂尔多斯盆地北部砂岩型铀矿原位微区稳定同位素特征及其地质意义[D]. 西安: 西北大学, 2018.

    Pang K. Stable isotopic characteristics of in-situ micro-zones of sandstone-type uranium deposits in the northern Ordos Basin and their geological significance[D]. Xi'an: Northwest University, 2018.

    [8]

    郝欣. 松辽盆地钱家店砂岩型铀矿床成矿特点及其成因分析[D]. 西安: 西北大学, 2020.

    Hao X. Metallogenic characteristics and genetic analysis of Qianjiadian sandstone-type uranium deposit in Songliao Basin[D]. Xi'an: Northwest University, 2020.

    [9]

    陈梦雅, 聂逢君, Fayek M. 开鲁盆地砂岩型铀矿中黄铁矿与铀矿化成因关系探讨[J]. 地球学报, 2021, 42(6): 868-880. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202106012.htm

    Chen M Y, Nie F J, Fayek M. Discussion on the genetic relationship between pyrite and uranium mineralization in sandstone-type uranium deposits in Kailu Basin[J]. Acta Geoscientica Sinica, 2021, 42(6): 868-880. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202106012.htm

    [10]

    黄广文, 余福承, 潘家永, 等. 伊犁盆地蒙其古尔铀矿床黄铁矿成因特征及其对铀成矿作用的指示[J]. 中国地质, 2021, 48(2): 507-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102012.htm

    Huang G W, Yu F C, Pan J Y, et al. Genetic characteristics of pyrite from the Mengqiguer uranium deposit in Yili Basin and its indications for uranium mineralization[J]. Geology in China, 2021, 48(2): 507-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102012.htm

    [11]

    刘文泉, 刘斌, 罗强, 等. 粤北书楼丘铀矿床黄铁矿原位微量元素、硫同位素组成及矿床成因指示[J]. 地球科学, 2022, 47(1): 178-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202201016.htm

    Liu W Q, Liu B, Luo Q, et al. In situ trace elements and sulfur isotopic compositions of pyrite in the Shulouqiu uranium deposit in northern Guangdong and indications of the deposit origin[J]. Geoscience, 2022, 47(1): 178-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202201016.htm

    [12]

    刘文泉, 江卫兵, 李海东, 等. 下庄竹山下铀矿床黄铁矿元素地球化学特征及其表征意义[J]. 铀矿地质, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002

    Liu W Q, Jiang W B, Li H D, et al. Elemental geochemical characteristics and characterization significance of pyrite in Xiazhuang Zhushan Xia uranium deposit[J]. Uranium Geology, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002

    [13]

    Mathez E A, Waight T. Lead isotopic disequilibrium be-tween sulfide and plagioclase in the Bushveld Complex and the chemical evolution of large layered intrusion[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1875-1888. doi: 10.1016/S0016-7037(02)01294-2

    [14]

    Tyrrell S, Haughton P D W, Daly J S, et al. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to upper Carboniferous paleodrainage, northern Englad[J]. Journal of Sedimentary Research, 2006, 76: 324-345. doi: 10.2110/jsr.2006.023

    [15]

    Davidson J P, Tepley F J Ⅲ. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 1997, 275: 826-829. doi: 10.1126/science.275.5301.826

    [16]

    邢波, 郑伟, 欧阳志侠, 等. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约[J]. 地质学报, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010

    Xing B, Zheng W, Ouyang Z X, et al. In-situ micro-area analysis of sulfide in the Miaoshan copper polymetallic deposit in western Guangdong and the restriction of S isotope on the genesis of the deposit[J]. Acta Geologica Sinica, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010

    [17]

    聂小松, 夏小平, 张乐, 等. 碎屑电气石的LA-MC-ICPMS硼同位素原位微区分析及其源区示踪: 以哀牢山构造带为例[J]. 地球化学, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004

    Nie X S, Xia X P, Zhang L, et al. LA-MC-ICPMS boron isotope in-situ micro-area analysis of detrital tourmaline and its source tracing: Taking the Ailaoshan structural belt as an example[J]. Geochimica, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004

    [18]

    熊潇, 朱赖民, 袁洪林, 等. 北秦岭铜峪铜矿床铅同位素的fsLA-MC-ICP-MS微区原位分析测定及其地质意义[J]. 科学通报, 2016, 61(25): 2811-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201625010.htm

    Xiong X, Zhu L M, Yuan H L, et al. The fsLA-MC-ICP-MS micro-area in-situ analysis and determination of lead isotopes in the Tongyu copper deposit in North Qinling and its geological significance[J]. Chinese Science Bulletin, 2016, 61(25): 2811-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201625010.htm

    [19]

    Zartman R E, Doe B R. Plumbotectonics—The model[J]. Tectono Physics, 1981, 75(1-2): 135-136. doi: 10.1016/0040-1951(81)90213-4

    [20]

    陈好寿. 铅同位素分析在矿床研究中的应用[J]. 地质地球化学, 1977(2): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ197702004.htm

    Chen H S. Application of lead isotope analysis in mineral deposit research[J]. Geogeochemistry, 1977(2): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ197702004.htm

    [21]

    夏毓亮. 铅同位素方法寻找铀矿[M]. 北京: 原子能出版社, 1982.

    Xia Y L. Lead isotope method to find uranium deposits[M]. Beijing: Atomic Energy Press, 1982.

    [22]

    张文, 刘勇胜, 胡兆初, 等. 微区原位LA-MC-ICP-MS铅同位素分析研究进展[J]. 矿物岩石地球化学通报, 2018, 37(5): 812-826. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201805004.htm

    Zhang W, Liu S W, Hu Z C, et al. Research progress in micro-area in situ LA-MC-ICP-MS lead isotope analysis[J]. Bulletin of Mineral Rock Geochemistry, 2018, 37(5): 812-826. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201805004.htm

    [23]

    Zhang W, Hu Z C, Yang L, et al. Improved inter-calibration of faraday cup and ion counting for in situ Pb isotope measurements using LA-MC-ICP-MS: Application to the study of the origin of the Fangshan Pluton, North China[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 467-487.

    [24]

    Shaheen M E, Gagnon J E, Fryer B J, et al. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences[J]. Chemical Geology, 2012, 330-331: 260-273. https://www.sciencedirect.com/science/article/pii/S0009254112004408

    [25]

    Chen K Y, Yuan H L, Bao Z A, et al. Precise and accurate in situ determination of lead isotope ratios in NIST, USGS, MPI-DING and CGSG glass reference materials using femtosecond laser ablation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38(1): 5-21.

    [26]

    陈开运, 范超, 袁洪林, 等. 飞秒激光剥蚀-多接收电感耦合等离子质谱原位微区分析青铜中铅同位素组成: 以古铜钱币为例[J]. 光谱学与光谱分析, 2013, 33(5): 1342-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201305047.htm

    Chen K Y, Fan C, Yuan H L, et al. Femtosecond laser ablation-multi-receiver inductively coupled plasma mass spectrometry in situ micro-analysis of lead isotopic composition in bronze—Taking bronze coins as an example[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1342-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201305047.htm

    [27]

    Yuan H L, Yin C, Liu X, et al. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2015, 58(10): 1713-1721. https://link.springer.com/article/10.1007/s11430-015-5095-5

    [28]

    Bao Z A, Yuan H L, Zong C L, et al. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fs LA-(MC)-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 1012-1022. https://pubs.rsc.org/en/content/articlelanding/2016/ja/c5ja00410a#!

    [29]

    吴柏林, 刘池阳, 张复新, 等. 东胜砂岩型铀矿后生蚀变地球化学性质及其成矿意义[J]. 地质学报, 2006, 80(5): 740-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605017.htm

    Wu B L, Liu C Y, Zhang F X, et al. Dongsheng sandstone type uranium deposit, epigenetic alteration geochemical characteristics and its metallogenic significance[J]. Acta Geologica Sinica, 2006, 80(5): 740-747. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200605017.htm

    [30]

    张龙, 吴柏林, 刘池阳, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 90(12): 3441-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612012.htm

    Zhang L, Wu B L, Liu C Y, et al. Provenance analysis of the Zhiluo Formation in the sandstone-hosted uranium deposits in the Northern Ordos Basin and implications for uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12): 3441-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201612012.htm

    [31]

    张术根. 矿相学[M]. 长沙: 中南大学出版社, 2014.

    Zhang S G. Mineralogy[M]. Changsha: Central South University Press, 2014.

    [32]

    张宏飞, 高山. 地球化学[M]. 北京: 科学出版社, 2012.

    Zhang H F, Gao S. Geochemistry[M]. Beijing: Science Press, 2012.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  2207
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2021-11-30
修回日期:  2022-02-18
录用日期:  2022-03-13
刊出日期:  2022-09-28

目录