一种特有的稀土矿物-异性石

陈伟, 周家云. 一种特有的稀土矿物-异性石[J]. 矿产综合利用, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026
引用本文: 陈伟, 周家云. 一种特有的稀土矿物-异性石[J]. 矿产综合利用, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026
Chen Wei, Zhou Jiayun. A Special Rare-earth Mineral —Eudialyte[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026
Citation: Chen Wei, Zhou Jiayun. A Special Rare-earth Mineral —Eudialyte[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 174-176, 193. doi: 10.3969/j.issn.1000-6532.2023.04.026

一种特有的稀土矿物-异性石

  • 基金项目: 中国地质调查局地质大调查项目(DD20221809)
详细信息
    作者简介: 陈伟(1986- ),男,工程师,研究方向为矿床学及矿产资源潜力评价
  • 中图分类号: TD955;P585

A Special Rare-earth Mineral —Eudialyte

  • 这是一篇地球科学领域的论文,主要阐述了碱性岩中的一种含稀土矿物-异性石的基本特征。异性石是一种常见的岩浆岩副矿物和热液矿物,易受风化和氧化等表生作用影响,能较好记录和保存岩浆和热液活动的原始信息,因而是研究岩浆和/或热液过程的一种常见示踪矿物。通过文章的综述,希望能够为深化异性石矿物学和地球化学研究、加强异性石型稀土矿方面的找矿工作、广泛开展与异性石有关的地质问题探讨等提供较全面的基础性认识。

  • 加载中
  • 表 1  与异性石有关的稀土矿吨位及品位(数据来源于[19])

    国家矿床名称矿石
    储量/Mt
    矿石
    品位/%
    稀土氧
    化物储
    量/Mt
    HREO/
    TREO/%
    格陵兰Ilimaussaq    
    Kvanefjeld deposit6191.066.54711.8
    Sørensen deposit2421.12.66711.7
    Zone 3 deposit95.31.161.10612.1
    加拿大Thor Lake
    (Nechalacho)
        
    Basal zone125.71.431.79920.9
    Upper zone177.71.322.35310
    Kipawa27.10.40.10736.2
    Strange Lake    
    Enriched zone201.140.28849.7
    Granite zone472.50.874.11836.5
    瑞典Norra Kärr58.10.590.34350.3
    美国Bokan, Alaska4.90.610.0340.1
    澳大利亚Toongi73.20.890.65123.3
    Brockman36.20.210.07685.8
    下载: 导出CSV
  • [1]

    U. S. Geological Survey[R]. Mineral Commodity Summaries, 2023: 142-143.

    [2]

    Schilling J, Wu F, McCammon C, et al. The compositional variability of eudialyte-group minerals[J]. Mineral. Mag. 2011, 75, 87–115.

    [3]

    Goodenough K M, Schilling J, Jonsson E, et al. Europe's rare earth element resource potential: an overview of REE metallogenetic provinces and theirgeodynamic setting[J]. Ore Geol. Rev, . 2016, 72: 838–856.

    [4]

    Paulick H, Machacek E. The global rare earth element exploration boom: an analysis of resources outside of China and discussion of development perspectives[J]. Res. Policy, 2017, 52:134-153. doi: 10.1016/j.resourpol.2017.02.002

    [5]

    Stromeyer F. Summary of meeting 16 December 1819 [Fossilien. . . ] [C]. Göttingische Gelehrte Anzeigen, 1819(3): 1993-2003.

    [6]

    邬斌, 王汝成, 刘晓东, 等. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义[J]. 岩石学报, 2018, 34(6):1741-1757. WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34(6):1741-1757.

    WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34( 6) : 1741-1757.

    [7]

    Wu F Y, Yang Yue Heng, Marks Michael A W, et al. 2010. In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 273(1-2): 8-34.

    [8]

    Borst A M, A A Finch, H Friis, et al. Structural state of rare earth elements in eudialyte-group minerals[J]. Mineralogical Magazine, 2019, 84(1):19-34.

    [9]

    Pfaff K, Wenzel T, Schilling J, et al. A fast and easy-to use approach to cation site assignment for eudialyte-group minerals[J]. Neues Jahrbuch fuer Mineralogie, 2010, 187:69-81. doi: 10.1127/0077-7757/2010/0166

    [10]

    Marks M A W, Markl G. A global review on agpaitic rocks[J]. Earth-Sci. Rev., 2017, 173:229-258. doi: 10.1016/j.earscirev.2017.06.002

    [11]

    Ratschbacher B C, Marks M A W, Bons P D, et al. Emplacement and geochemical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: The lujavrites of the Ilímaussaq complex, SW Greenland[J]. Lithos, 2015, 231.

    [12]

    Sørensen H. Agpaitic nepheline syenites: a potential source of rare elements[J]. Appl. Geochem., 1992(7):417-427.

    [13]

    Kogarko L N, Lahaye Y, Brey G P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics[J]. Mineral. Petrol., 2010, 98:197-208. doi: 10.1007/s00710-009-0066-1

    [14]

    Marks M A W, Hettmann K, Schilling J, et al. The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages[J]. J. Petrol., 2011, 52:439-455. doi: 10.1093/petrology/egq086

    [15]

    Sørensen H,. The agpaitic rocks - an overview[J]. Mineral. Mag., 1997, 61:485-498. doi: 10.1180/minmag.1997.061.407.02

    [16]

    Schilling J, Marks M, Wenzel T, et al. Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: a case study from Tamazeght, Morocco[J]. Can. Mineral, 2009, 47:351-365. doi: 10.3749/canmin.47.2.351

    [17]

    Kramm U, Kogarko L N. Nd and Sr isotope signatures of the Khibina und Lovozero agpaitic centres, Kola Alkaline Province, Russia[J]. Lithos, 1994, 32:225-242. doi: 10.1016/0024-4937(94)90041-8

    [18]

    Mitchell R H, Liferovich R P. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa[J]. Lithos, 2006, 91:352-372. doi: 10.1016/j.lithos.2006.03.025

    [19]

    Hatch G P. TMR advanced rare-earth projects index. Technology Metal Research. March 2014. Available online: http://www.techmetalsresearch.com/metrics-indices/tmr-advanced-rare-earth-projects-index(accessed on 24 July 2017)

    [20]

    冯雪茹, 刘述平, 李超, 等. 由低浓度稀土溶液萃取回收稀土的研究[J]. 矿产综合利用, 2018, 39(1):17-21. FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1):17-21.

    FENG X R, LIU S P, LI C, et al. Study on the extraction and recovery of rare earth from low concentration rare earth solution[J]. Multipurpose Utilization of Mineral Resources, 2018, 39(1): 17-21.

    [21]

    文伟, 陈福林, 余新文, 等. 某含硫萤石重晶石共伴生氟碳铈稀土矿硫脱除必要性及回收试验[J]. 矿产综合利用, 2019, 40(6):45-48. WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6):45-48.

    WEN W, CHEN F L, YU X W, et al. Experimental study on the necessity and recovery of sulfur removal from a fluorocarbon-cerium rare earth ore associated with fluorite barite[J]. Multipurpose Utilization of Mineral Resources, 2019, 40(6): 45-48.

  • 加载中

(1)

计量
  • 文章访问数:  1126
  • PDF下载数:  128
  • 施引文献:  0
出版历程
收稿日期:  2023-06-19
刊出日期:  2023-08-25

目录