Review on the Influence of Common External Ions on the Properties of Spodumene Collectors
-
摘要:
这是一篇矿业工程领域的论文。锂辉石自身晶体特性是决定可浮性的内源性因素;捕收剂是决定锂辉石可浮性的外源性因素,浮选过程中,常见金属离子对锂辉石捕收剂的性能产生重要影响。本文从锂辉石晶体特性、外界金属离子对工业生产中常见锂辉石捕收剂的作用两方面对影响锂辉石浮选行为的因素做了介绍和总结。首先归纳了锂辉石的表面晶体特性,并总结了锂辉石表面晶体活性位点对浮选行为的影响。其次归纳和总结了常见金属离子对工业生产中常用的油酸类、羟肟酸类、胺类及阴阳离子复配类捕收剂性能的影响。研究表明Ca2+、Fe3+、Mg2+均可提高油酸类捕收剂的性能,Pb2+可提高羟肟酸类捕收剂的性能,Ca2+、Mg2+可提高胺类捕收剂的性能,铁球磨矿介质可抑制胺类捕收剂与锂辉石的作用。该研究对提高锂辉石的分选效率、高效使用锂辉石捕收剂具有理论和现实意义。
Abstract:This is an essay in the field of mining engineering. The crystal characteristics of spodumene are the endogenous factors that determine the floatability. The collector is an exogenous factor that determines floatability of spodumene. In the flotation process, the common metal ions have an important influence on the performance of spodumene collector. In this essay, the factors affecting the flotation behavior of spodumene are introduced and summarized from the crystal characteristics of spodumene and the effect of external metal ions on the common spodumene collector in industrial production. Firstly, the surface crystal characteristics of spodumene are summarized, and the effect of the active site of spodumene surface crystal on flotation behavior is summarized. Secondly, the effects of common metal ions on the properties of oleic acid, hydroxamic acid, amine and anion-cation complex collectors commonly used in industrial production are summarized. Studies have shown that Ca2+, Fe3+ and Mg2+ can improve the performance of oleic acid collectors. Pb2+ can improve the performance of hydroxamic acid collectors. Ca2+ can improve the performance of amine collectors. The effect of amine collector and spodumene can be inhibited by an iron ball milling medium. This study has theoretical and practical significance for improving the separation efficiency of spodumene and using spodumene collector efficiently.
-
Key words:
- Mining engineering /
- Spodumene /
- Crystal structure /
- Common metal ions /
- Collectors /
- Flotation behavior
-
-
[1] 殷德洪, 斯提芬·路易多尔德, 海尔穆特·安特雷科维兹齐. 全球锂的资源、应用及其再生利用[J]. 世界有色金属, 2011(8):25-29. YIN D H,S LUIDOLD,H ANTREKOWITSCH. Global lithium resources, applications and recycling[J]. World Nonferrous Metals, 2011(8):25-29.
YIN D H, S LUIDOLD, H ANTREKOWITSCH.Global lithium resources, applications and recycling[J]. World Nonferrous Metals, 2011(8):25-29.
[2] 杜康, 王军强, 曹海龙, 等. 航空航天用铝锂合金研究进展及发展趋势[J]. 铝加工, 2022(2):3-9. DU K, WANG J Q, CAO H L, et al. Research progress and development trend of Al-Li alloys for aerospace applications[J]. Aluminum Fabrication, 2022(2):3-9.
DU K, WANG J Q, CAO H L, et al. Research progress and development trend of Al-Li alloys for aerospace applications[J]. Aluminum Fabrication, 2022(2): 3-9.
[3] 郑笑芳, 彭晓东, 谢卫东, 等. 锂及其含锂合金的研究与应用现状[J]. 兵器材料科学与工程, 2011, 34(4):94-98. ZHENG X F, PENG X D, XIE W D, et al. Research and application status of lithium and its alloys[J]. Ordnance Material Science and Engineering, 2011, 34(4):94-98.
ZHENG X F, PENG X D, XIE W D, et al. Research and application status of lithium and its alloys[J]. Ordnance Material Science and Engineering, 2011, 34(4): 94-98.
[4] Mansfield D K, Strachan J D, Bell M G, et al. Enhanced performance of deuterium-tritium-fueled super shots using extensive lithium conditioning in the Tokamak Fusion Test Reactor[J]. Physics of Plasmas, 1995, 2(11):4252-4256. doi: 10.1063/1.871050
[5] 程仁举, 李成秀, 刘星, 等. 川西某伟晶岩型锂辉石矿浮选实验研究[J]. 矿产综合利用, 2020(6):148-152. CHENG R J, LI C X, LIU X, et al. Experimental research on the flotation of a pegmatite type spodumene ore in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6):148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025
CHENG R J, LI C X, LIU X, et al. Experimental research on the flotation of a pegmatite type spodumene ore in Western Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 148-152. doi: 10.3969/j.issn.1000-6532.2020.06.025
[6] 徐大鹏, 肖文军, 彭家建, 等. 锂催化酮的硅氢加成反应[J]. 杭州师范大学学报(自然科学版), 2016, 15(4):337-341. XU D P, XIAO W J, PENG J J, et al. Hydrosilylation reaction of ketone catalyzed with lithium[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2016, 15(4):337-341.
XU D P, XIAO W J, PENG J J, et al. Hydrosilylation reaction of ketone catalyzed with lithium[J]. Journal of Hangzhou Normal University (Natural Sciences Edition), 2016, 15(4): 337-341.
[7] WAN Y, DU Z B, ZHANG S, et al. Electro-optic properties of indium/erbium-codoped lithium niobate crystal for integrated optics[J]. Optics & Laser Technology, 2017.
[8] 杨俊峰, 潘寻. “十四五”中国锂动力电池产业关键资源供需分析[J]. 有色金属(冶炼部分), 2021(6):37-41+52. YANG J F, PAN X. Analysis on supply and demand of key resources of lithium power battery industry in China during the 14th five-year plan period[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6):37-41+52.
YANG J F, PAN X. Analysis on supply and demand of key resources of lithium power battery industry in China during the 14th five-year plan period[J]. Nonferrous Metals(Extractive Metallurgy), 2021(6): 37-41+52.
[9] 袁中直, 刘金成, 吕正中, 等. 金属锂原电池技术进展与未来[J]. 电源技术, 2019, 43(5):735-738. YUAN Z Z, LIU J C, LV Z Z, et al. Technical progress and future of lithium primary batteries[J]. Chinese Journal of Power Sources, 2019, 43(5):735-738.
YUAN Z Z, LIU J C, LV Z Z, et al. Technical progress and future of lithium primary batteries[J]. Chinese Journal of Power Sources, 2019, 43(5): 735-738.
[10] 李波, 张莉莉, 洪秋阳, 等. 废弃锂电池电极材料中有价金属的赋存状态[J]. 矿产综合利用, 2022(1):200-204. LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204.
LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 200-204.
[11] 许志琴, 王汝成, 赵中宝, 等. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 2018, 92(6):1091-1106. XU Z Q, WANG R C, ZHAO Z B, et al. On the structural backgrounds of the large-scale "hard-rock type" lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6):1091-1106.
XU Z Q, WANG R C, ZHAO Z B, et al. On the structural backgrounds of the large-scale "hard-rock type" lithium ore belts in China[J]. Acta Geologica Sinica, 2018, 92(6): 1091-1106.
[12] 孙传尧. 硅酸盐矿物浮选原理[M]. 北京: 科学出版社, 2001.
SUN C Y. Principle of silicate mineral flotation[M].Beijing:Science Press, 2001.
[13] 吴西顺, 王登红, 黄文斌, 等. 全球锂矿及伴生铍铌钽的采选冶技术发展趋势[J]. 矿产综合利用, 2020(1):1-9. WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1):1-9.
WU X S, WANG D H, HUANG W B, et al. Global technical development trends of litihium minerals and associated beryllium-niobium-tantalum exploitation[J]. Multipurpose Utilization of Mineral Resources, 2020(1): 1-9.
[14] 徐正震, 梁精龙, 李慧, 等. 含锂资源中锂的提取研究现状及展望[J]. 矿产综合利用, 2021(5):32-37. XU Z Z, LIANG J L, LI H, et al. Research status and prospects of Lithium Extraction from Lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5):32-37.
XU Z Z, LIANG J L, LI H, et al. Research status and prospects of Lithium Extraction from Lithium containing resources[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 32-37.
[15] 李成秀, 程仁举, 刘星. 我国锂辉石矿选矿技术研究现状及展望[J]. 矿产综合利用, 2021(5):1-8. Li C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5):1-8.
Li C X, CHENG R J, LIU X. Research status and prospects of spodumene ore beneficiation technology in China[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 1-8.
[16] 陈超, 张裕书, 张少翔, 等. 川西九龙地区低品位锂辉石浮选实验研究[J]. 矿产综合利用, 2019(4):55-58+156. CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong Area of West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4):55-58+156.
CHEN C, ZHANG Y S, ZHANG S X, et al. Flotation test of low-grade spodumene in the Jiulong Area of West Sichuan[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 55-58+156.
[17] 郑海涛, 王毓华, 赵悦豪, 等. NaOH和机械搅拌对锂辉石表面及浮选行为的影响[J]. 有色金属工程, 2019, 9(6):61-68. ZHENG H T, WANG Y H, ZHAO Y H, et al. Influence of NaOH and mechanical agitation on the surface and flotation behavior of spodumene[J]. Nonferrous Metals Engineering, 2019, 9(6):61-68.
ZHENG H T, WANG Y H, ZHAO Y H, et al. Influence of NaOH and mechanical agitation on the surface and flotation behavior of spodumene[J]. Nonferrous Metals Engineering, 2019, 9(6): 61-68.
[18] 孙志健, 于洋. 某含腐锂辉石的难选锂辉石矿选矿实验研究[J]. 有色金属工程, 2021(11):29-33. SUN Z J, YU Y. Processing research on a refractory spodumene ore containing cymatolite[J]. Nonferrous Metals Engineering, 2021(11):29-33.
SUN Z J, YU Y. Processing research on a refractory spodumene ore containing cymatolite[J]. Nonferrous Metals Engineering, 2021(11): 29-33.
[19] 吕永信. 锂辉石—绿柱石浮选分离新方法—污染离子Ca2+选择性解吸分离法[J]. 矿产综合利用, 1980(1):8-16. LV Y X. A new flotation separation method of spodumene and beryl-selective desorption separation of contaminated ion Ca2+[J]. Multipurpose Utilization of Mineral Resources, 1980(1):8-16.
LV Y X. A new flotation separation method of spodumene and beryl--selective desorption separation of contaminated ion Ca2+[J]. Multipurpose Utilization of Mineral Resources, 1980(1): 8-16.
[20] 赵清平, 蓝卓越, 童雄. 铜离子对闪锌矿、黄铁矿浮选的选择性活化机理研究[J]. 矿产综合利用, 2021(3):27-38. ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021(3):27-38.
ZHAO Q P, LAN Z Y, TONG X. Activation mechanism of selective flotation of sphalerite and pyrite by copper[J]. Multipurpose Utilization of Mineral Resources, 2021 (3): 27-38.
[21] 国务院. 国务院关于印发2030年前碳达峰行动方案的通知[J]. 中国钢铁业, 2021(10):11-20. The State Council. Circular of the State Council on the issuance of an action plan to peak carbon emissions by 2030[J]. China Steel, 2021(10):11-20. doi: 10.3969/j.issn.1672-5115.2021.10.003
The State Council. Circular of the State Council on the issuance of an action plan to peak carbon emissions by 2030[J]. China Steel, 2021(10): 11-20. doi: 10.3969/j.issn.1672-5115.2021.10.003
[22] 吴西顺, 王登红, 杨添天, 等. 碳中和目标下的锂矿产业创新及颠覆性技术[J]. 矿产综合利用, 2022(2):1-8. WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2):1-8.
WU X S, WANG D H, YANG T T, et al. Lithium mining industry innovation and disruptive technology under the goal of carbon neutrality[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 1-8.
[23] 孙传尧, 印万忠. 关于硅酸盐矿物的可浮性与其晶体结构及表面特性关系的研究[J]. 矿冶, 1998(3):23-29+38. SUN C Y, YIN W Z. Study on the relationship between floatability, crystal structure and surface characteristics of silicate minerals[J]. Mining and Metallurgy, 1998(3):23-29+38.
SUN C Y, YIN W Z. Study on the relationship between floatability, crystal structure and surface characteristics of silicate minerals[J]. Mining and Metallurgy, 1998(3): 23-29+38.
[24] 徐龙华, 田佳, 董发勤, 等. 油酸钠浮选锂辉石的表面晶体化学及各向异性[J]. 中国有色金属学报, 2016, 26(10):2214-2221. XU L H, TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10):2214-2221.
XU L H, TIAN J, DONG F Q, et al. Surface crystal chemistry and anisotropy of spodumene flotation with sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(10): 2214-2221.
[25] 雷祖伟,钟宏. 含铷、铯锂云母矿的复合盐焙烧-浸出性能及机理[J]. 矿产综合利用, 2019(3):152-158. LEI Z W,ZHONG H. Composite salt roasting - leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158.
LEI Z W, ZHONG H. Composite salt roasting - leaching performance and mechanism of lepidolite containing rubidium and cesium[J]. Multipurpose Utilization of Mineral Resources, 2019(3):152-158.
[26] 周乐光. 矿石学基础[M]. 北京: 冶金工业出版社, 2007.
ZHOU L G. Fundamentals of ore science [M]. Beijing: Metallurgical Industry Press, 2007.
[27] 印万忠, 孙传尧. 硅酸盐矿物表面特性的X射线光电子能谱分析[J]. 东北大学学报:自然科学版, 2002, 23(2):156-159. YIN W Z, SUN C Y. X-ray Photoelectron spectrometric analysis on surface property of silicate minerals[J]. Journal of Northeastern University (Natural Science), 2002, 23(2):156-159.
YIN W Z, SUN C Y. X-ray Photoelectron spectrometric analysis on surface property of silicate minerals[J]. Journal of Northeastern University (Natural Science), 2002, 23(2): 156-159.
[28] Zhu G, Wang X, Li E, et al. Wetting characteristics of spodumene surfaces as influenced by collector adsorption[J]. Minerals Engineering, 2019, 130:117-128. doi: 10.1016/j.mineng.2018.10.010
[29] Moon K S, Fuerstenau D W. Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO 3 ] 2 ) from other aluminosilicates[J]. International Journal of Mineral Processing, 2003, 72(1):11-24.
[30] Zhu G, Wang Y, Liu X, et al. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior[J]. Applied Surface Science, 2015, 357:333-339. doi: 10.1016/j.apsusc.2015.08.257
[31] 周贺鹏. 微细粒锂辉石聚团浮选特性及矿物表面反应机理[D]. 徐州: 中国矿业大学, 2020.
ZHOU H P. Flotation characteristics of microfine-grained lithium pyroxene aggregates and mineral surface reaction mechanism[D]. Xuzhou: China University of Mining and Technology, 2020.
[32] 谢瑞琦, 朱一民, 刘杰, 等. 基于密度泛函理论的锂辉石晶体结构及(110)面表面化学基因特性研究[J]. 金属矿山, 2020(6):68-74. XIE R Q, ZHU Y M, LIU J, et al. The First principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6):68-74.
XIE R Q, ZHU Y M, LIU J, et al. The First principle calculation of spodumene electronic structure and surface chemistry features of spodumene(110)surface[J]. Metal Mine, 2020(6): 68-74.
[33] 邱鸿鑫, 陈浙锐, 王光辉. 水分子在伊利石表面的吸附作用机理分析[J]. 矿产综合利用, 2020, 223(3):197-202+196. QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 223(3):197-202+196.
QIU H X, CHEN Z R, WANG G H. Analysis of adsorption mechanism of water molecules on illite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 223(3): 197-202+196.
[34] 杨飞, 房晓红, 曾凡桂, 等. 高岭石表面吸附铅和镉的模拟计算[J]. 矿产综合利用, 2020, 225(5):196-202+100. YANG F, FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 225(5):196-202+100. doi: 10.3969/j.issn.1000-6532.2020.05.031
YANG F , FANG X H, ZENG F G, et al. Simulation calculation of adsorption of lead and cadmium on kaolinite surface[J]. Multipurpose Utilization of Mineral Resources, 2020, 225(5): 196-202+100. doi: 10.3969/j.issn.1000-6532.2020.05.031
[35] 王云飞, 李宏亮, 董宪姝, 等. 伊利石对煤泥水过滤机制的影响研究[J]. 矿产综合利用, 2020, 224(4): 202-208.
WANG Y F, LI H L, DONG X S, et al. Study on effect of illite on the filtration mechanism of coal slime water[J]. Multipurpose Utilization of Mineral Resources2020, No. 224(4): 202-208.
[36] 朱建光. 浮选药剂[M]. 北京: 冶金工业出版社, 1993.
ZHU J G. Flotation reagents[M]. Metallurgical Industry Press, 1993.
[37] Jm A, Lxa B, Dwa B , et al. The activation mechanism of metal ions on spodumene flotation from the perspective of in situ ATR-FTIR and ToF-SIMS[J]. Minerals Engineering, 182.
[38] Yu F S, Wang Y H, Wang J M, et al. First-principle investigation on mechanism of Ca ion activating flotation of spodumene[J]. Rare Metals, 2014, 33(3):358-362. doi: 10.1007/s12598-014-0304-5
[39] XIE R Q, ZHU Y M, LIU J, et al. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz[J]. Journal of Molecular Liquids, 2021(336):1-7.
[40] 石海兰, 朱文龙. Fe3+对锂辉石浮选的影响及机理研究[J]. 稀有金属与硬质合金, 2015, 43(4):5-9. SHI H L, ZHU W L. Study on influence of Fe3+ on spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4):5-9.
SHI H L, ZHU W L. Study on influence of Fe3+ on spodumene flotation and its mechanism[J]. Rare Metals and Cemented Carbides, 2015, 43(4): 5-9.
[41] 于福顺, 孙永峰, 蒋曼, 等. 金属阳离子在锂辉石浮选中的活化行为及作用机理[J]. 中国有色金属学报, 2021, 31(1):203-210. YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1):203-210.
YU F S, SUN Y F, JIANG M, et al. Activation behavior and mechanism of metallic cations in spodumene flotation[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 203-210.
[42] RAI B, SATHISH P, TANWAR J, et al. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, 362(2):510-516. doi: 10.1016/j.jcis.2011.06.069
[43] Han H, Hu Y, Sun W, et al. Novel catalysis mechanisms of benzohydroxamic acid adsorption by lead ions and changes in the surface of scheelite particles[J]. Minerals Engineering, 2018, 119:11-22. doi: 10.1016/j.mineng.2018.01.005
[44] Tong, Yue, Haisheng, et al. New insights into the role of Pb-BHA complexes in the flotation of tungsten minerals[J]. JOM, 2017, 69(11):2345-2351. doi: 10.1007/s11837-017-2531-3
[45] Tian M, Gao Z, Khoso S A , et al. Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations-ScienceDirect[J]. Minerals Engineering, 143: 106006-106006.
[46] 邢其毅、裴伟伟、徐瑞秋, 等. 基础有机化学[M]. 北京: 北京大学出版社, 2017.
XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry[M]. Beijing: Peking University Press, 2017.
[47] XIE R Q, ZHU Y M, LIU J, et al. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz[J]. Separation and Purification Technology, 2021, 264(4):1-7.
[48] 呼振峰, 孙传尧. 铁介质磨矿对锂辉石和绿柱石浮选影响的分子模拟计算研究[J]. 有色金属(选矿部分), 2016(6):88-94. HU Z F, SUN C Y. A molecular simulation computational study on the effect of iron media grinding on the flotation of lithium pyroxene and beryl[J]. Nonferrous Metals (Mineral Processing Section), 2016(6):88-94.
HU Z F, SUN C Y. A molecular simulation computational study on the effect of iron media grinding on the flotation of lithium pyroxene and beryl[J]. Nonferrous Metals (Mineral Processing Section), 2016(6): 88-94.
[49] Wang Y, Zhu G, Zhang L, et al. Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore[J]. Minerals Engineering, 2018, 125:120-125. doi: 10.1016/j.mineng.2018.06.002
[50] WANG Y H, YU F S. Effects of metallic ions on the flotation of spodumene and beryl[J]. Journal of China University of Mining and Technology, 2007, 17(1):35-39. doi: 10.1016/S1006-1266(07)60008-X
-