Modeling of urban geological attributes based on conditional simulation: A case study of Guang'an City.
-
摘要:
城市地质建模是实现地下空间可视化、认识城市复杂地质条件的重要手段,也是城市地质调查工作的重要任务。前人开展城市地质建模工作时,通常将地下地质体作为均匀介质进行建模和插值,导致地质模型不能反映地下地质体离散型和非均质性,影响了模型的可靠性和未来应用。本研究以四川省广安市为例,通过野外地质调查、资料收集(地形地貌、钻孔、剖面图和柱状图等)和数据分析,选择可以反映地质离散性和非均质性的条件模拟方法,以岩样作为样本数据集,开展研究区三维建模工作。本次工作建立了广安市城市规划区地层构造模型、岩性和属性参数三维模型,并基于层次分析法(AHP)评价了以隧道为开发手段的围岩等级。结果显示,规划区内存在分带特征明显的西南、西、中和南四个工程地质特征带,同时,围岩等级显示全区由深到浅大部分区域都适合以隧道开发为手段来进行地下空间利用,为广安市城市地下空间规划和开发提供了立体地质参考和依据。最后,对城市地质建模未来研究方向进行了探讨。
Abstract:Urban Geological Modeling (UGM) is a crucial approach for implementing visualization of the underground space and recognizing the complex geological conditions of a city, and it is the top priority task of urban geological survey. Previous UGM studies, assuming homogeneous geological characteristics, have resulted in deviated modeling results and applications. In the case of Guang'an city, a conditional simulation interpolation method is used to establish an attributes distribution model with rock samples as the modeling unit. Combined with field surveys, data collection (topographic, boreholes, profile diagrams, stratigraphic columns, etc.) and data analysis, this methodology is capable of presenting the geological discreteness and heterogeneity of the study area. In this paper, the structure, lithology and attributes distribution model were constructed for the study area. Meanwhile, a rating of tunnel country rock was done using Analytic Hierarchy Process (AHP) as a development method. The results indicate that there are four geotechnical zones in the southwest, west, middle and south of the modeling area with significant zonation characteristics. And the ratings of tunnel country rock demonstrate favorable features for utilization by means of tunnel excavation method from deep to shallow, which provides three-dimensional reference for the planning and utilization of urban underground space in Guang'an city. Additionally, future research directions of UGM are being discussed.
-
Key words:
- urban geology /
- geological modeling /
- conditional simulation /
- engineering geology /
- underground space
-
-
表 1 上沙溪庙组 (J2s)工程岩组分层参考表
Table 1. Geotechnical units classification of upper Shaximiao Formation (J2s)
地层分层 顶面高程(m) 底面高程(m) 厚度(m) 岩性描述 7 450.00 399.26 50.74 紫红色、灰黄色、灰紫色中细粒长石砂岩与紫红色泥岩韵律层,共有3个砂–泥岩韵律层 6 399.26 375.00 24.26 灰黄色块状中细粒长石砂岩,底部见泥砾现象,可见平行层理,交错层理 5 375.00 313.69 61.31 紫红色泥岩与灰黄色块状细粒长石砂岩不等厚互层,泥沙比2∶1~6∶1 4 313.69 293.69 20.00 紫红色泥岩夹灰紫色块状细粒长石砂岩,泥沙比接近14∶1 3 293.69 266.52 27.17 上部紫红色泥岩与灰紫色、灰黄色中细粒长石砂岩互层,泥沙比1∶3~2∶1,下部为一层泥-沙韵律层,厚约15 m 2 266.52 253.33 13.19 紫红色砂质泥岩,顶部含有一层灰黄色厚层状中细粒长石砂岩 1 253.33 150.00 103.33 上部为一套4 m的灰黄色块状中细粒长石砂岩,下部为紫红色泥岩与灰紫色、灰黄色砂泥互层,泥砂比2∶1~1∶5 表 2 围岩等级评价影响因素及划分标准
Table 2. Interfering factors and classification criteria of country rock grade assessments
评价因素 划分标准 等级划分 量化分值 岩石单轴饱和抗压强度Rc(Mpa) >60 坚硬岩 5 60~30 较坚硬岩 4 30~15 较软岩 3 15~5 软岩 2 <5 极软岩 1 岩石质量指标RQD(%) >90 好的 5 75~90 较好的 4 50~75 较差的 3 25~50 差的 2 <25 极差的 1 地下水位指标 地下水位以上 2 地下水位以下 1 表 3 围岩等级判别矩阵构建
Table 3. Discrimination matrix of country rock grades
要素 饱和抗压强度 RQD 水位 饱和抗压强度 1 1/2 2 RQD 2 1 2 水位 1/2 1/2 1 -
[1] Chen Z L, Chen J Y, Liu H, et al. , 2018. Present status and development trends of underground space in chinese cities: evaluation and analysis[J]. Tunnelling and Underground Space Technology, 71: 253-270. doi: 10.1016/j.tust.2017.08.027
[2] Doyle M R, 2016. From hydro/geology to the streetscape: evaluating urban underground resource potential[J]. Tunnelling and Underground Space Technology, 55: 83-95. doi: 10.1016/j.tust.2016.01.021
[3] He H H, He J, Xiao J Z, et al. , 2020. 3D geological modeling and engineering properties of shallow superficial deposits: A case study in Beijing, China[J]. Tunnelling and Underground Space Technology, 100: 1-17.
[4] Hou W S, Yang L, Deng D C, et al. , 2016. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China[J]. Computers & Geosciences, 89: 1-11.
[5] Lapenna V, Chambers J, Shi B, et al. , 2020. Preface to the special issue on “Frontiers and applications of geological engineering and geophysical monitoring technologies in urban areas”[J]. Engineering Geology, 268: 1-2.
[6] Paradigm, 2018. GOCAD Operation Manual[S].
[7] Price S J, Terrington R L, Busby J, et al. , 2018. 3D ground-use optimisation for sustainable urban development planning: A case-study from Earls Court, London, UK[J]. Tunnelling and Underground Space Technology, 81: 144-164. doi: 10.1016/j.tust.2018.06.025
[8] Šipetić N, Kuzmić P, 2016. Design the future urban plan of the underground construction from the aspect of geological and geotechnical features of belgrade's inner city area[J]. Procedia Engineering, 165: 641-648. doi: 10.1016/j.proeng.2016.11.761
[9] Zhu H H, Huang X B, Li X J, et al. , 2016. Evaluation of urban underground space resources using digitalization technologies[J]. Underground Space, 1(2): 124-136. doi: 10.1016/j.undsp.2016.08.002
[10] 丁俊, 倪军师, 魏伦武, 等, 2005. 西南地区城市环境地质调查工作的思考. 沉积与特提斯地质, 25(4): 108 − 110
Ding J, Ni J S, Wei L W, et al., 2005. Reflections on the urban environmental geological survey in southwest China[J]. Sedimentary Geology and Tethyan Geology, 25(4): 108 − 110.
[11] 方寅琛, 龚日祥, 李三凤, 等, 2017. 基于三维地质模型的地下空间开发适宜性评价——以嘉兴城市地质调查工作为例[J]. 上海国土资源, 38(2): 43 − 45.
Fang Y C, Gong R X, Li S F, et al., 2017. Suitability evaluation of underground space development based on a three-dimensional geological model, using the Jiaxing urban geological survey as an example[J]. Geotechnical Investigation&Surveying(9): 5 − 10.
[12] 胡先莉, 2007. 序贯条件模拟方法研究及应用[D]. 成都: 成都理工大学.
Hu X L, 2007. Research and application of sequentially conditional simulation methods[D]. Chengdu: Chengdu University of Technology.
[13] 李佳伟, 2019. 三维城市空间一体化集成建模技术研究[D]. 成都: 成都理工大学.
Li J W, 2019. Research on urban space unified 3D modeling technology[D]. Chengdu: Chengdu University of Technology.
[14] 李鹏岳, 韩浩东, 王东辉, 等, 2021. 城市地下空间资源开发和利用适宜性评价现状及发展趋势[J]. 沉积与特提斯地质, 41(1): 121-128
Li P Y, Han H D, Wang D H, et al. , 2021. Current situation and development trends of suitability evaluation of urban underground space resources[J]. Sedimentary Geology and Tethyan Geology, 41(1): 121-128.
[15] 廖建三, 彭卫平, 林本海, 2006. 影响广州市浅层地下空间开发利用的地质因素分析及分区评价[J]. 岩石力学与工程学报, 25(S2): 3357-3362
Liao J S, Peng W P, Lin B H, 2006. Analysis and partition evaluation of geological factors affecting space development and utilization of shallow underground in Guangzhou city[J]. Chinese Journal of Rock Mechanics and Engineering, 25(S2): 3357-3362.
[16] 林良俊, 李亚民, 葛伟亚, 等, 2017. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 44(6): 1086-1101
Lin L J, Li Y M, Ge W Y, et al. , 2017. General ideas for urban geological survey in China and key theory and techniques[J]. China Geology, 44(6): 1086-1101.
[17] 彭芳乐, 乔永康, 程光华, 等, 2019. 我国城市地下空间规划现状、问题与对策[J]. 地学前缘, 26(3): 57-68 doi: 10.13745/j.esf.sf.2019.5.23
Peng F L, Qiao Y K, Cheng G H, et al. , 2019. Current situation and existing problems of and coping strategies for urban underground space planning in China[J]. Earth Science Frontiers, 26(3): 57-68. doi: 10.13745/j.esf.sf.2019.5.23
[18] 屈红刚, 潘懋, 刘学清, 等, 2015. 城市三维地质建模及其在城镇化建设中的应用[J]. 地质通报, 34(7): 1350-1358 doi: 10.3969/j.issn.1671-2552.2015.07.013
Qu H G, Pan M, Liu X Q, et al. , 2015. Urban 3-D geological modeling and its application to urbanization[J]. Geological Bulletin of China, 34(7): 1350-1358. doi: 10.3969/j.issn.1671-2552.2015.07.013
[19] 阮明, 钱婷, 2020. 城市地下空间三维可视化平台研究[J]. 地理空间信息, 18(4): 34-37
Ruan M, Qian T, 2020. Research on 3D visualization platform for urban underground space[J]. Geospatial Information, 18(4): 34-37.
[20] 谭飞, 汪君, 焦玉勇, 等, 2021. 城市地下空间适宜性评价研究国内外现状及趋势[J]. 地球科学, 46(5): 1896-1908
Tan F, Wang J, Jiao Y Y, et al. , 2021. Current situation and development of urban underground space suitability evaluation[J]. Earth Science, 46(5): 1896-1908.
[21] 王波, 2013. 城市地下空间开发利用问题的探索和实践[D]. 北京: 中国地质大学(北京).
Wang B, 2013. Exploration and practice of the development and utilization of urban underground space[D]. Beijing: China University of Geosciences(Beijing).
[22] 王磊, 王运生, 陈云, 等, 2013. 基于GIS的四川广安区地质灾害危险性评价[J]. 中国地质灾害与防治学报, 24(1): 98-117
Wang L, Wang Y S, Chen Y, et al. , 2013. Geological hazard assessment based on GIS in Guang’an, Sichuan province[J]. The Chinese Journal of Geological Hazard and Control, 24(1): 98-117.
[23] 魏小佳, 付博, 邓雪莉, 等, 2017. 广安市区城市总体规划用地地质灾害危险性评价[J]. 长春工程学院学报(自然科学版), 18(2): 110 − 116.
Wei X J, Fu B, Deng X L, et al., 2017. The risk evalution on geological hazards assessment in Guang'an urban overall plan areas[J]. J. Changchun Inst. Tech. (Nat. Sci. Edi.), 18(2): 110 − 116.
[24] 邢红星, 琚太忠, 林建阳, 1997. 普通克里格法在矿产储量计算中的应用[J]. 地质与勘探, 33(4): 46-51
Xin H X, Ju T Z, Lin J Y, 1997. The ordinary kring's application to mineral calculation of reserves[J]. Geology and Prospecting, 33(4): 46-51.
[25] 熊晶璇, 倪军师, 张成江, 等, 2006. 城市地质环境风险性分区评价GIS软件的设计与实现[J].沉积与特提斯地质, 26(2): 106 − 109
Xiong J X, Ni J S, Zhang C J, et al., 2006. The design and implementation of the GIS software for risk assessment of urban geo-environments[J]. Sedimentary Geology and Tethyan Geology, 26(2): 106 − 109.
[26] 赵彦锋, 孙志英, 陈杰, 2010. Kriging插值和序贯高斯条件模拟算法的对比分析[J]. 地球信息科学学报, 12(6): 767-776
Zhao Y F, Sun Z Y, Chen J, 2010. Analysis and comparison in arithmetic for kriging interpolation and sequentialgaussian conditional simulation[J]. Journal Of Geo-Information Science, 12(6): 767-776.
-