Tethys orogenic belt
-
摘要:
特提斯造山带,是欧亚大陆主要克拉通之间,洋壳俯冲消亡过程中包含的洋板块及微陆块,发生过强烈的构造搬运和构造混杂的构造(区)带。目前对特提斯(主要是原特提斯)的争议较大,本文综合利用前人构造地质、岩石学特征、构造年代学、生物古地理和板块运动学等最新成果,将特提斯造山带划分为元古代—古生代原特提斯造山带、晚古生代—三叠纪古特提斯造山带、三叠纪至新生代新特提斯造山带。原特提斯造山带,由中亚造山带(钦察弧)、乌拉尔造山带和秦-祁-昆造山带组成,中亚新元古代—古生代造山带是原特提斯主洋盆(古亚洲洋)弧盆系,乌拉尔新元古代—古生代造山带是原特提斯西部边缘弧盆系,秦-祁-昆新元古代—早古生代造山带是原特提斯东部(现南部)边缘弧盆系。古特提斯造山带,北界为断续分布的斯塔夫罗波尔-曼格什拉克-阿姆达利亚晚古生代缝合带—康西瓦(南昆仑)-阿尼玛卿-勉略(南秦岭)晚古生代缝合带,南界为高加索-赫拉特—澜沧江三叠纪缝合带,是丝绸之路晚古生代—三叠纪岩浆弧弧-弧碰撞(区)带。新特提斯造山带,位于古特提斯造山带南侧,南界为扎格罗斯缝合带(K2—E)—雅鲁藏布江缝合带(J3—E2),是中生代—新生代不同时间拼贴到劳(欧)亚大陆南缘的弧盆系。
Abstract:The Tethys orogenic belt is a tectonic zone between the main cratons of the Eurasian continent, consisting of multiple orogenic belts comprised of Ocean Plates and Microcontinents associated with subduction and disappearance of Oceanic crust, which involved strong tectonic movement and mixing. At present, the Tethys (mainly the Proto-Tethys) is in great dispute. In this paper, the Tethys orogenic belt is divided into the Proterozoic-Paleozoic Proto-Tethys orogenic belt, the late Paleozoic-Triassic Paleo-Tethys orogenic belt, and the Triassic-Cenozoic Neo-Tethys orogenic belt based on the latest achievements of predecessors in structural geology, petrology characteristics, tectonic chronology, biological paleogeography and plate kinematics. The Proto-Tethys orogenic belt is composed of the Central Asia orogenic belt (Kipchak arc), Ural orogenic belt and the Qin-Qi-Kun orogenic belt. The Central Asia Neoproterozoic-Paleozoic orogenic belt is the Proto-Tethys main ocean basin (Paleo Asian Ocean) arc basin system, the Ural Neoproterozoic-Paleozoic orogenic belt is the Proto-Tethys western marginal arc basin system, and the Qin-Qi-Kun Neoproterozoic-Early Paleozoic orogenic belt is the Proto-Tethys eastern (now southern) marginal arc basin system. The Paleo-Tethys orogenic belt is bounded by the discontinuous Stavropol-Mangeshlak-Amdalia late Paleozoic suture zone—Kangxiwar (South Kunlun) Anemaqen-Mianlue (South Qinling) late Paleozoic suture zone in the north, and the Caucasus-Herat—Lancang River Triassic suture zone in the south, which is the late Paleozoic-Triassic magmatic arc folding collision (area) zone of the Silk Road. The Neo-Tethys orogenic belt, located in the south of the Paleo-Tethys orogenic belt, is bounded by the Zagros suture zone (K2-E) - the Yarlung Zangbo suture zone (J3-E2) in the south. It is an arc-basin system that was spliced to the southern margin of the Laurasia (Eurasian) continent in the Mesozoic-Cenozoic at different times.
-
Key words:
- Tethys orogenic belt /
- Proto-Tethys /
- Paleo-Tethys /
- Neo-Tethys
-
-
图 5 古特提斯造山带(西部)构造特征(据Bakirov,1970;Natal'in and Şengör,2005修编)
Figure 5.
图 6 丝绸之路岩浆弧走滑碰撞示意图(据Natal'in and Şengör,2005修编)
Figure 6.
图 7 全球(特提斯)新元古代(
1000 ~570 Ma)板块构造演化图(Scotese,2022)Figure 7.
图 8 全球(特提斯)早寒武世(540 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 8.
图 9 全球(特提斯)晚寒武世(500 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 9.
图 10 全球(特提斯)晚奥陶世(445 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 10.
图 2 中亚造山带构造特征(据Şengör,1996修编)
Figure 2.
图 3 乌拉尔造山带构造区划图(据Zonenshain,1990;Ivanov,2013修编)
Figure 3.
图 11 全球(特提斯)晚志留世(420 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 11.
图 12 全球(特提斯)晚泥盆世(360 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 12.
图 13 全球(特提斯)晚石炭世(300 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 13.
图 14 全球(特提斯)晚二叠世(260 Ma)板块构造图(据Şengör,1996;Scotese,2022修编)
Figure 14.
图 15 全球(特提斯)中生代—新生代(251 Ma至今)板块构造演化图(Scotese,2022)
Figure 15.
-
[1] Bakirov A A, 1970. Fundament, Osnovnye Razlomy Turanskoy Plity v Svyazi s Eye Neftegazonosnostyu. Nedra, Moscow.
[2] 边千韬, 罗小全, 李红生, 等, 1999. 阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J]. 地质科学, (4): 523-524
Bian Q T, Luo X Q, Li H S, et al. , 1999. Discovery of the Early Paleozoic and Early Carboniferous-Early Permian ophiolites in the A’nyemaqen, Qinghai province, China [J]. Scientia Geologica Sinica, (4): 523-524.
[3] Blakey R, Wong T, 2003. Carboniferous-Permian paleogeography of the assembly of Pangaea. In: Proceedings of the XVth International Congress on Carboniferous and Permian Statigraphy[J].Utrecht, 443 − 456.
[4] Cao H H, Li S Z, Zhao S J, et al. , 2016. Detrital zircon geochronology of Neoproterozoic to Early Paleozoicsedimentary rocks in the North Qinling Rogerfor the tectonic evolution of the Kuanping Ocean[J]. Precambrian Research, 279: 1-16. doi: 10.1016/j.precamres.2016.04.001
[5] 曹颖, 王建, 刘建国, 等, 2016. 西昆仑早古生代岩浆弧大同岩体中埃达克质岩石的成因及地质意义[J]. 吉林大学学报(地球科学版), 46(2): 425-442
Cao Y, Wang J, Liu J G, et al. , 2016. Formationand significance of adakitic rocks in Datong pluton of Early Paleozoicmagmatic are of Western Kunlun Orogen[J]. Journal of Jilin University (Earth Science Edition), 46 (2): 425-442 (in Chinese with English abstract).
[6] 陈智梁, 1994. 特提斯地质一百年[J]. 特提斯地质, 1 − 22.
Chen Z L, 1994. Tethyan Geology for 100 Years [J], Tethyan Geology, (00): 1 − 22.
[7] 邓永福, 1984. 川西高原炉霍地带海底裂谷火山混杂堆积特征及时代探讨[J]. 青藏高原地质文集, (2): 91 − 100
Deng Y F, 1984. The preliminary study of the characters and the age of the volcanic mélange strata of the marine rift in the Luhuo belt, western Sichuan [J] Contribution to the Geology of the Qinghai-Xizang(Tibet) Plateau, (2): 91 − 100.
[8] 丁道桂, 王道轩, 刘伟新, 等, 1996. 西昆仑造山带与盆地[M]. 北京: 地质出版社: 1 − 238
Ding D G, Wang D X, Liu W X, et al., 1996. The West Kunlun Orogenic Belt and Basin [M]. Beijing: Geological Publishing House: 1 − 238.
[9] Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29(1): 1-40. doi: 10.1016/j.gr.2015.06.009
[10] Dong Y P, Yang Z, Liu X M, et al. , 2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China Craton: Constraints from geochronology and geochemistry of the Kuanping ophiolite[J]. Precambrian Research, 255: 77-95. doi: 10.1016/j.precamres.2014.09.008
[11] 高长林, 黄泽光, 叶德燎, 等, 2005. 中国早古生代三大古海洋及其对盆地的控制[J]. 石油实验地质, (5): 19-28
Gao C L, Huang Z G, Ye D L, et al. , 2005. Three paleo-oceans of the Early Paleozoic and their control to basins in China [J]. Petroleum Geology & Experiment, (5): 19-28.
[12] 耿全如, 李文昌, 王立全, 等, 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 41(02): 297-315
Geng Q R, Li W C, Wang L Q, et al. , 2021. Paleozoic tectonic framework and evolution of the central and western Tethys [J]. Sedimentary Geology and Tethyan Geology, 41 (02): 297-315.
[13] Gardner C J, Graham I T, Belousova E, et al. , 2017. Evidence for Ordovician subduction-related magmatism in the Truong Son terrane, SE Laos: Implications for Gondwana evolution and porphyry Cu exploration potential in SE Asia[J]. Gondwana Research, 44: 139-156. doi: 10.1016/j.gr.2016.11.003
[14] 郭福祥, 2001. 新疆古生代构造-生物古地理[J]. 新疆地质, 19(1): 7 doi: 10.3969/j.issn.1000-8845.2001.01.004
Guo F X, 2001. Paleozoic Tectonics-Paleobiogeography of Xinjiang, China [J]. Xinjiang Geology, 19 (1): 7. doi: 10.3969/j.issn.1000-8845.2001.01.004
[15] 黄汲清, 陈炳蔚, 1987. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社: 1 − 109
Huang J Q, Chen B W, 1987. The Tethys Sea Evolution of China and Its Adjacent Area [M]. Beijing: Geological Publishing House: 1 − 109.
[16] Isozaki Y, Maruyama S, Furuoka F, 1990. Accreted oceanic materials in Japan[J]. Tectonophysics, 181(1-4): 179-205. doi: 10.1016/0040-1951(90)90016-2
[17] Ivanov K S, 1998. The main features of geological history (1.6-2.0 MG) and structure of the Urals[J]. Ural Basin Review of Accounting Studies, Ekaterinburg, 252p (in Russian).
[18] Ivanov K S, 2000. Estimation of the subduction and collision paleospeeds in the Urals genesis[J]. Reports of the Russian Academy of Sciences, 377(2): 231-234.
[19] Ivanov K S, Puchkov V N, Yu N F, et al. , 2013. Tectonics of the Urals and adjacent part of the West-Siberian platform basement: Main features of geology and development[J]. Journal of Asian Earth Sciences, 31(aug. 10): 12-24.
[20] Ivanov S N, Puchkov V N, Ivanov K S, et al., 1986. Formation of the Earth’s Crust of the Urals[J]. Nauka, Moscow, 246p (in Russian).
[21] 姜春发, 杨经绥, 冯秉贵, 等, 1992. 昆仑开合构造[R]. 北京: 地质出版社: 1 − 217
Jiang C F, Yang J S, Feng B G, et al., 1992. Opening-Closing Tectonics of Kunlun Mountains [R]. Beijing: Geological Publishing House: 1 − 217.
[22] Kosarev A M, Puchkov V N, Seravkin I B, 2005. Petrologo-geochemical particularities of the early Devonian-Eifelian island-arc volcanites of the Magnitogorsk zone in geodynamical contex[J]. Lithoshpere, 4: 24 − 40 (in Russian).
[23] 赖绍聪, 1994. 青藏高原北缘火山作用与构造演化[J]. 现代地质, 8(3): 2
Lai S C, 1994. Volcanism and tectonic evolution on the northern edge of the Tibet Plateau [J] Modern Geology, 8 (3): 2.
[24] Laurent-Charvet S, Charvet J, Monie P. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): new structural and geochronological data[J]. Tectonics, 22(2): 1009.
[25] Lehmann B, Zhao X F, Zhou M F, et al. , 2013. Midsilurian backarc spreading at themassive sulfide deposit, Lancangjiang zone, southwestern Yunnan China[J]. Gondwana Research, 24 (2): 648-663. doi: 10.1016/j.gr.2012.12.018
[26] Li S Z, Zhao S I, Liu X, et al. , 2018. Closure of the Proto-tethys Ocean and Earth Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011
[27] 李三忠, 赵淑娟, 李玺瑶, 等, 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 32(9): 2609-2627
Li S Z, Zhao S J, Li X Y, et al. , 2016. Proto-Tehtys Ocean in East Asia (I): Northern and southern border faults and subduction polarity [J]. Acta Petrologica Sinica, 32 (09): 2609-2627.
[28] 李文昌, 潘桂棠, 侯增谦, 等, 2010.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社: 1 − 461
Li W C, Pan G T, Hou Z Q, et al., 2010. Multiple Island Arc Basin System in Southwest “Sanjiang”: The Collisional Orogenic Metallogenic Theory and Prospecting Techniques [M]. Beijing: Geological Publishing House: 1 − 461.
[29] 李兴振, 潘桂棠, 罗建宁, 1990. 论三江地区冈瓦纳和劳亚大陆的分界[J]. 青藏高原地质文集, (20): 217-233
Li X Z, Pan G T, Luo J N, 1990. A Boundary between Gondwana and Laurasia Continents in Sanjiang Region [J]. Contribution to the Geology of the Qinghai-Xizang(Tibet) Plateau, (20): 217-233.
[30] 李兴振, 许效松, 潘桂棠, 1995. 泛华夏大陆群与东特提斯构造域演化[J]. 岩相古地理, 15(4): 1 − 13
Li X Z, Xu X S, Pan G T, 1995. Evolution of The Pan-Cathaysian Landmass Group and Eastern Tethyan Tectonic Domain [J] Lithofacies Paleogeography, 15 (4): 1 − 13.
[31] 李兴振, 刘文均, 王义昭, 等, 1999. 西南三江地区特提斯构造演化与成矿(总论)[M]. 北京: 地质出版社: 1 − 276
Li X Z, Liu W J, Wang Y Z, et al., 1999. Tectonic Evolution and Mineralization of Tethys in Sanjiang of Southwest China (General) [M] Beijing: Geological Publishing House: 1 − 276.
[32] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160 (12): 179-210.
[33] 林方成, 李生, 曾琴琴, 等, 2022, 中国西南地区地质调查工作十年(2011—2020)进展综述[J]. 沉积与特提斯地质, 42(04): 507-528
Lin F C, Li S, Zeng Q Q, et al. , 2022. Review on the progress of geological survey works in Southwest China in the past ten years (2011-2020) [J]. Sedimentary Geology and Tethyan Geology, 42 (04): 507-528.
[34] 刘宝珺, 2021, 潘桂棠先生的地质情怀[J]. 沉积与特提斯地质, 41(2): 132-135
Liu B J, 2021. Mr. Pan Guitang's Geological Feelings [J]. Sedimentary Geology and Tethyan Geology, 41 (2): 132-135.
[35] 刘良, 曹玉亭, 陈丹玲, 等, 2013. 南阿尔金与北秦岭高压超高压变质作用研究新进展[J]. 科学通报, 58(22): 2113-2123 doi: 10.1360/csb2013-58-22-2113
Liu L, Cao Y T, Chen D L, et al. , 2013. New progresses on the HP-UHP metamorphism in the South Altyn Tagh and the North Qinling [J]. Chin Sci Bull, 58 (22): 2113-2123. doi: 10.1360/csb2013-58-22-2113
[36] 刘良, 康磊, 曹玉亭, 等, 2015. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学(地球科学), 45(8): 1126
Liu L, Kang L, Cao Y T, et al. , 2015. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China [J]. Science China(Earth Science), 45 (8): 1126.
[37] 刘晓春, 李三忠, 江博明, 2015. 桐柏红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学(地球科学), 45(8): 1088-1108
Liu X C, Li S Z, Jiang B M, 2015. Tectonic evolution of the Tongbai-Hong’an orogen in central China: From oceanic subduction/accretion to continent-continent collision [J]. Science China(Earth Science), 45 (8): 1088-1108.
[38] 刘增乾, 李兴振, 叶庆同, 等, 1993. 三江地区构造岩浆带的划分与矿产分布规律[M]. 北京: 地质出版社: 1 − 246
Liu Z Q, Li X Z, Ye Q T, et al., 1993. Classification of tectonic magmatic zones and distribution of mineral resources in the Sanjiang region [M] Beijing: Geological Publishing House: 1 − 246 (in Chinese).
[39] 刘战庆, 裴先治, 李瑞保, 等, 2011. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的 LA-ICP-MS锆石UPb定年及其构造意义[J]. 地质学报, 85(2): 185-194
Liu Z Q, Pei X Z, Li R B, et al. , 2011. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication [J]. Acta Geologica Sinica, 85 (2): 185-194.
[40] 陆松年, 2001. 从罗迪尼亚到冈瓦纳超大陆——对新元古代超大陆研究几个问题的思考[J]. 地学前缘, 8(4): 8
Lu S N, 2001. From Rodinia to Gondwana Supercontinentum—Thingking about problems of Researching Neoproterozoic Supercontinentum [J]. Earth Science Frontiers, 8 (4): 8.
[41] 陆松年, 于海峰, 李怀坤, 等, 2006. “中央造山带”早古生代缝合带及构造分区概述[J]. 地质通报, 25(12): 1368-1380 doi: 10.3969/j.issn.1671-2552.2006.12.004
Lu S N, Yu H F, Li H K, et al. , 2006. Ear ly Paleozoic sutur e zones and tectonic divisions in the“Centr al China Orogen” [J]. Geological Bulletin of China, . 25(12): 1368-1380. doi: 10.3969/j.issn.1671-2552.2006.12.004
[42] 罗改, 王全伟, 秦宇龙, 等, 2021, 四川省大地构造单元划分及其基本特征[J]. 沉积与特提斯地质, 41(04): 633-647
Luo G, Wang Q W, Qin Y L, et al. , 2021. Divisions and their basic characteristics of tectonic units in Sichuan Province [J]. Sedimentary Geology and Tethyan Geology, 41 (04): 633-647.
[43] Metcalfe I, 2021. Multiple Tethyan Ocean basins and orogenic belts in Asia[J]. Gondwana Research. 100: 87 − 130.
[44] 莫宣学, 路凤香, 沈上越, 等, 1993. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社: 1 − 267
Mo X X, Lu F X, Shen S Y, et al., 1993. Sanjiang Tethyan volcanism and related mineralization [M] Beijing: Geological Publishing House: 1 − 267.
[45] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, (6): 43-51
Mo X X, Pan G T, 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectonic magmatic events [J]. Earth Science Frontiers, (6): 43-51.
[46] Moore G F, Curray J R, Emmel F J, 1982. Sedimentation in Sunda trench and forearc region[J]. Geological Society London Special Publications, 10: 245-248. doi: 10.1144/GSL.SP.1982.010.01.16
[47] Nakano N, Osanai Y, Owada M, et al. , 2007. Geologic and metamorphic evolution of the basement complexes in the Kontum Massif, central Vietnam[J]. Gondwana Research, 12(4): 438-453. doi: 10.1016/j.gr.2007.01.003
[48] Natal'in B A, Şengör A M C. 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure[J]. Tectonophysics, 404(3): 175 − 202.
[49] Nguyen Q M, Feng Q L, Zi J W, et al. , 2019. Cambrian intra-oceanic arc trondhjemite and tonalite in the Tam Ky-Phuoc Son Suture Zone, central Vietnam: Implications for the early Paleozoic assembly of the Indochina Block[J]. Gondwana research, 70: 151-170. doi: 10.1016/j.gr.2019.01.002
[50] Nie H, Yang J, Zhou G, et al. , 2017. Geochemical and Re–Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China[J]. Lithos, 292-293: 307-319. doi: 10.1016/j.lithos.2017.09.009
[51] 潘桂棠, 1994. 全球洋-陆转换中的特提斯演化[J]. 特提斯地质, (00): 23-40
Pan G T, 1994. An Evolution of Tethys in Global Ocean-continent Transformation [J]. Tethyan Geology, (00): 23-40.
[52] 潘桂棠, 陈智梁, 李兴振, 等, 1997. 东特提斯地质构造形成演化[R]. 北京: 地质出版社: 65 − 128
Pan G T, Chen Z L, Li X Z, et al., 1997. The Geological Tectonic Formation and Evolution of the Eastern Tethys [R]. Beijing: Geological Publishing House: 65 − 128.
[53] 潘桂棠, 陈智梁, 李兴振, 1996. 东特提斯多弧—盆系统演化模式[J]. 岩相古地理, 16(2): 14
Pan G T, Chen Z L, Li X Z, 1996. Models for the evolution of the polyarc-basin system in Easten Tethys [J]. Lithofacies Paleogeography, 16 (2): 14.
[54] 潘桂棠, 王立全, 李荣社, 等, 2012. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 32(3): 1-20
Pan G T, Wang L Q, Li R S, et al. , 2012. Tectonic model of archipelagic arc-basin systems: The key to the continental geology [J]. Sedimentary Geology and Tethyan Geology, 32(3): 1-20.
[55] 潘桂棠, 王立全, 李兴振, 等, 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, (3): 1 − 26
Pan G T, Wang L Q, Li X Z, et al., 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau [J] Sedimentary Geology and Tethyan Geology, (3): 1 − 26.
[56] 潘桂棠, 朱弟成, 王立全, 等, 2004. 班公湖怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 11(4): 371-382
Pan G T, Zhu D C, Wang L Q, et al. , 2004. Bangong Lake—Nu River suture zone—the northern boundary of Gondwanaland: Evidence from geology and geophysics [J]. Earth Science Frontiers, 11(4): 371-382.
[57] 潘桂棠, 王立全, 耿全如, 等, 2020, 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19
Pan G T, Wang L Q, Geng Q R, et al. , 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean [J]. Sedimentary Geology and Tethyan Geology, 40 (3): 1-19.
[58] 潘桂棠, 王立全, 尹福光, 等, 2022, 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质, 42(02): 151-175
Pan G T, Wang L Q, Yin F G, et al. , 2022. Researches on geological-tectonic evolution of Tibetan Plateau: A review, recent advances, and directions in the future [J]. Sedimentary Geology and Tethyan Geology, 42 (02): 151-175.
[59] 潘桂棠, 徐强, 王立全, 2001. 青藏高原多岛弧-盆系格局机制[J], 矿物岩石, 21(3): 186 − 189
Pan G T, Xu Q, Wang L Q, 2001. The frame mechanism of multiple island arc-basin system in Tibetan Plateau[J], Mineral Petrol, 21 (3): 186 − 189.
[60] 裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 43(12): 4498-4520
Pei X Z, Li R B, Li Z C, et al. , 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen [J]. Earth Science, 43 (12): 4498-4520.
[61] Puchkov V N, 2000. The Southern and Middle Urals paleogynamics[J]. Dauria Ufa, 145(in Russian).
[62] Ren J S, Xie G L, 1991. Proceeding of first international symposium on Gondwana dispersion and Asian accretion-geological evolution of eastern Tethys: November 25 december 1[C].Beijing: China University of Geosciences Press.
[63] Scotese C R, 2022. 板块漂移[EB/OL]. [2017-11-08]/[2023-6-17]. https://www.bilibili.com/video/BV1ox411j7DF?p=2&vd_source=e2221a64008fb965a8893c3c5f6 d10ed.
[64] Sengör A M C, Yilmaz Y, Ketin I, 1980. Remnants of a pre–Late Jurassic ocean in northern Turkey: Fragments of Permian-Triassic Paleo-Tethys?[J]. Geological Society of America Bulletin, 91(9): 599.
[65] Şengör A M C, 1984. The Cimmeride orogenic system and the tectonics of Eurasia, The geological Society of America [J]. Spacial Paper 195.
[66] Sengör A M C, 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective[J]. Earth-science Reviews, 27 (1-2): 1-201. doi: 10.1016/0012-8252(90)90002-D
[67] Sengör A M C, Okurogullari A H, 1991. The role of Accretionary Wedges in the growth of continents: asiastic examples from Argand to plate tectonics[J]. Eclogae Geologicae Helvetiae, 84(3): 535-551.
[68] Sengör A M C, Natal'in B A, Burtman V S, 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299-307. doi: 10.1038/364299a0
[69] Şengör A M C, Natal'in B A, 1996. Paleotectonics of Asia : Fragments of a synthesis[J]. Cambridge University Press Cambridge, 486 − 640p.
[70] Shi M F, Lin F C, Fan W Y, et al. , 2015. Zircon U–Pb ages and geochemistry of granitoids in the Truong Son terrane, Vietnam: Tectonic and metallogenic implications[J]. Journal of Asian Earth Sciences, 101(apr. 1): 101-120.
[71] Sone M, Metcalfe I, 2008. Parallel Tethvan sutures in mainland Southeast Asia: New insights for Palaeo-tethys closure and cations for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 340 (2-3): 166-179. doi: 10.1016/j.crte.2007.09.008
[72] 宋述光, 张贵宾, 张聪, 等, 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连柴北缘高压超高压变质带的岩石学制约[J]. 科学通报, 58(23): 2240-2245 doi: 10.1360/972013-586
Song S G, Zhang G B, Zhang C, et al. , 2013. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP-UHP belts in Qilian-Qaidam, the northern Tibetan Plateau [J]. Chin Sci Bull, 58 (23): 2240-2245. doi: 10.1360/972013-586
[73] Stampfli G M, Borel G D, 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons[J]. Earth and Planetary Science Letters, 196(1-2): 17-33. doi: 10.1016/S0012-821X(01)00588-X
[74] Suess E. 1893. Are great ocean depths permanent ? [J] .Natural Science, 1893,2: 180−187.
[75] Tran H T, Zaw K, Halpin J A, et al. , 2014. The Tam Ky-Phuoc Son Shear Zone in central Vietnam: Tectonic and metallogenic implications[J]. Gondwana Research, 26(1): 144-164. doi: 10.1016/j.gr.2013.04.008
[76] von Raumer J F, Stampfli G M, 2008. The birth of the rheic OceanEarly Palaeozoic subsidence patterns and subsequent tectonic platescenarios[J]. Tectonophysics, 461(1-4): 9-20. doi: 10.1016/j.tecto.2008.04.012
[77] 王保弟, 王立全, 潘桂棠, 等, 2013. 昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J]. 科学通报, 58(4): 344-354 doi: 10.1360/csb2013-58-4-344
Wang B D, Wang L Q, Pan G T, et al. , 2013. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication [J]. Chin Sci Bull, 58 (4): 344-354. doi: 10.1360/csb2013-58-4-344
[78] 王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁孟连带原古特提斯构造演化[J]. 地球科学, 43(8): 2527-2550
Wang B D, Wang L Q, Wang D B, et al. , 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China [J]. Earth Science, 43 (8): 2527-2550.
[79] 王立全, 潘桂棠, 李定谋, 等, 1999. 金沙江弧-盆系时空结构及地史演化[J]. 地质学报73(3): 206 − 218
Wang L Q, Pan G T, Li D M, et al., 1999. The spatio-temporal framework and geological evolution of the Jinshajiang arc basin system [J]. Acta Geologica Sinica. 73 (3): 206 − 218.
[80] 王立全, 王保弟, 李光明, 等, 2021, 东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 41(02): 283-296
Wang L Q, Wang B D, Li G M, et al. , 2021. Major progresses of geological survey and research in East Tethys: An overview [J]. Sedimentary Geology and Tethys Geology, 41 (02): 283-296.
[81] 王晓霞, 王涛, 张成立, 2015. 秦岭造山带花岗质岩浆作用与造山带演化[J]. 中国科学(地球科学), 45(8): 09.
Wang X X, Wang T, Zhang C L, 2015. Granitoid magmatism in the Qinling orogen, central China and its bearing on orogenic evolution. Science China [J]. Earth Science, 45 (8): 9.
[82] 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学[J]. 岩石学报, 36(06): 1627-1674 doi: 10.18654/1000-0569/2020.06.01
Wu F Y, Wan B, Zhao L, et al. , 2020 Tethys Geodynamics [J]. Acta Petrologica Sinica, 36 (06): 1627-1674. doi: 10.18654/1000-0569/2020.06.01
[83] 吴元保, 郑永飞, 2013. 华北陆块古生代南向增生与秦岭桐柏红安造山带构造演化[J]. 科学通报, 58(23): 2246-2250 doi: 10.1360/972013-662
Wu Y B, Zheng Y F, 2013. Southward accretion of the North China Block and the tectonic evolution of the Qinling-Tongbai-Hong’an orogenic belt [J]. Chin Sci Bull, 58 (23): 2246-2250. doi: 10.1360/972013-662
[84] 肖文交, 侯泉林, 李继亮, 等, 2000. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑), 30(增1): 22-28
Xiao W J, Hou Q L, Li J L, et al. , 2000. Anatomy of the Tectonic Facies and the Process of Multiple Island Proliferation in the West Kunlun Mountains [J]. Science in China(Series D), 30 (Add. 1): 22-28.
[85] 许效松, 刘宝珺, 牟传龙, 等, 2004. 中国中西部海相盆地分析与油气资源[M]. 北京: 地质出版社: 1 − 230
Xu X S, Liu B J, Mou C L, et al., 2004. Marine Basin Analysis of Central-western China and Petroleum Resources [M]. Beijing: Geological Publishing House: 1 − 230.
[86] 许效松, 徐强, 潘桂棠, 等, 1996. 中国南大陆古地理与Pangea对比[J]. 岩相古地理, (02): 1-23
Xu X S, Xu Q, Pan G T, et al. , 1996. Paleogeography Of The South China Continent And Its Correlation With Pangea [J]. Lithofacies Paleogeography, (02): 1-23.
[87] 许效松, 徐强, 潘桂棠, 等, 1996. 中国南大陆演化与全球古地理对比[M]. 北京: 地质出版社: 1 − 161
Xu X S, Xu Q, Pan G T, et al., 1996. Paleogeography of the South China Continent (SCC) and Its Contrast with Pangea [M]. Beijing: Geological Publishing House: 1 − 161.
[88] 徐旭辉, 高长林, 江兴歌, 等, 2009. 中国含油气盆地动态分析概论[M]. 北京: 石油工业出版社: 1 − 194
Xu X H, Gao C L, Jiang X G, et al., 2009. An Outline of Dynamic Analysis of Petroliferous Basins of China [M]. Beijing: Petroleum Industry Press: 1 − 194.
[89] 许志琴, 戚学祥, 刘福来, 等, 2004. 西昆仑康西瓦加里东期孔兹岩系及地质意义[J]. 地质学报, 78(6): 733-743
Xu Z Q, Qi X X, Liu F L, et al. , 2004, The Kangxiwar Caledonian Khondalite Series in West Kunlun, China, and Its Geological Significance [J]. Acta Geologica Sinica, 78 (6): 733-743.
[90] Yang J S, Robinson P T, Jiang C F, et al. , 1996. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 258(1-4): 215-231. doi: 10.1016/0040-1951(95)00199-9
[91] Yazeva R G, Bochkarev V V, 1998. Geology and geodynamics of the Southern Urals[J]. Ekaterinburg: UB RAS, 203p (in Russian).
[92] Ye S, Flueh D, Klaeschen D, et al. , 1997. Crustal structure along the EDGE transect beneaththe Kodiak shelf off Alska derived from OBH seismic refraction data[J]. Geophysical Journal International, 130: 283-302. doi: 10.1111/j.1365-246X.1997.tb05648.x
[93] 尹福光, 孙洁, 常梦瑶, 等, 2019. 中华人民共和国地质图(西南)[M]. 北京: 地质出版社: 63 − 98
Yin F G, Sun J, Chang M Y, et al., 2019 Geological Map of the People's Republic of China (Southwest) [M] Beijing: Geological Publishing House: 63 − 98.
[94] 余星, 许绪成, 韩喜球, 等, 2022. “全新特提斯洋”概念与广义特提斯构造域[J]. 地质学报, 96(12): 4131-4139
Yu X, Xu X C, Han X Q, et al. , 2022. The proposition of Holo-Tethys Ocean and the generalized Tethyan tectonic domain [J]. Acta Geologica Sinica, 96 (12): 4131-4139.
[95] Zhang C L, Zou H B, Ye X T, et al. , 2019b. Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau: Implications for the assembly of the Tarim terrane to Gondwana[J]. Geoscience Frontier, 10 (3): 973-988. doi: 10.1016/j.gsf.2018.05.006
[96] 张传林, 马华东, 朱炳玉, 等, 2019. 西昆仑-喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 65(5): 1077-1102
Zhang C L, Ma H D, Zhu B Y, et al. , 2019. Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect [J]. Geological Review, 65 (5): 1077-1102.
[97] 张克信, 何卫红, 徐亚东, 等, 2016. 中国洋板块地层分布及构造演化[J]. 地学前缘, 23(6): 24-30
Zhang K X, He W H, Xu Y D, et al. , 2016. Palaeogeographic distribution and tectonic evolution of OPS in China [J]. Earth Science Frontier, 23 (06): 24-30.
[98] 张克信, 何卫红, 徐亚东, 等, 2021, 论从俯冲增生杂岩带重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例[J]. 沉积与特提斯地质, 41(02): 137-151
Zhang K X, He W H, Xu Y D, et al. , 2021. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: an example from the Qinghai-Tibet Tethyan Permian strata [J]. Sedimentary Geology and Tethyan Geology, 41(2): 137-151.
[99] 钟大赉, 1998. 滇川西部古特提斯造山带[M]. 北京: 科学出版社: 1 − 231
Zhong D L, 1998. Paleotethysides in West Yunnan and Sichuan [M]. Beijing: Science Press: 1 − 231.
[100] 朱同兴, 冯心涛, 王晓飞, 等, 2020, 青藏高原晚三叠世构造-古地理综述[J]. 沉积与特提斯地质, 40(3): 59-71
Zhu T X, Feng X T, Wang X F, et al. , 2020. Summary of the Late Triassic tectonic paleogeography in the Qinghai-Tibetan Plateau, China [J]. Sedimentary Geology and Tethyan Geology, 40 (03): 59-71.
[101] Zonenshain L P, Kuzmin M L, Natapov L M, et al. , 1990. Geology of the USSR: A plate-tectonic synthesis[J]. Amer Geophys Union Geodynamic Ser, 18(2-3): 438-454.
-