Study on Leaching of Gallium and Scandium from a Gibbsite-Type Bauxite
-
摘要:
这是一篇冶金工程领域的论文。铝土矿中具有较高含量的镓和钪,回收价值大。研究镓和钪在铝土矿溶出过程中的浸出行为对于镓和钪的提取利用具有重要意义。研究了三水铝石型铝土矿中镓和钪的浸出行为。结果表明,镓较易被浸出而进入溶液中;升高温度、延长反应时间、增大氢氧化钠质量浓度均有利于镓的浸出,镓浸出率可达73%以上;添加氧化钙降低镓的浸出率;溶液中的镓含量在循环溶出过程中产生积累,循环溶出3次后,分解母液中镓浓度达24.2 mg/L。赤泥及分解母液均具有较高的镓含量,均具有回收利用价值。钪不易被浸出,97.4%的钪被富集在赤泥中,钪回收提取的对象主要是赤泥。
Abstract:This is an article in the field of metallurgical engineering. There are high contents of gallium and scandium in bauxite, which has great recovery value. The study on the leaching behavior of gallium and scandium in bauxite leaching process is of great significance for the extraction and utilization of gallium and scandium. The leaching behavior of gallium and scandium from gibbsite bauxite was studied. The results showed that gallium was easy to be leached into the solution. Increasing the temperature, prolonging the reaction time and increasing the mass concentration of sodium hydroxide were conducive to the leaching of gallium. The leaching rate of gallium could reach over 73%, and adding calcium oxide reduced the leaching rate of gallium. The gallium content in the solution was accumulated during the cyclic digestion process. After 3 cycles, the gallium concentration in the decomposition mother liquor reached 24.2 mg/L. Both red mud and decomposition mother liquor had high gallium content and had recycling value. Scandium was not easy to be leached. After digestion, 97.4% of scandium was enriched in red mud. The object of scandium recovery and extraction was mainly red mud.
-
-
表 1 矿石成分/%
Table 1. Composition of ore
Al2O3 SiO2 Fe2O3 TiO2 CaO Ga Sc 49.52 4.11 17.22 2.64 0.08 0.0134 0.0063 表 2 循环溶出过程中赤泥、溶出液及分解母液中镓的含量
Table 2. Gallium content in red mud, dissolved liquor and decomposition mother liquor during recycling dissolution process
溶出 镓的含量 第一次溶出赤泥/% 0.0215 第二次溶出赤泥/% 0.0193 第三次溶出赤泥/% 0.0227 第一次溶出液/(mg/L) 22.8 第二次溶出液/(mg/L) 24.6 第三次溶出液/(mg/L) 25.7 第一次分解母液/(mg/L) 23.1 第二次分解母液/(mg/L) 23.4 第三次分解母液/(mg/L) 24.2 表 3 循环溶出过程中赤泥及溶出液中钪的含量
Table 3. Scandium content in red mud and dissolved liquor during recycling dissolution process
溶出 钪的含量 第一次溶出液/(mg/L) 0.031 第二次溶出液/(mg/L) 0.036 第三次溶出液/(mg/L) 0.034 第一次溶出赤泥/% 0.0132 第二次溶出赤泥/% 0.0125 第三次溶出赤泥/% 0.0136 -
[1] 王红伟, 徐素鹏, 马科友, 等. 中低品位高铁铝土矿溶出性能研究[J]. 矿产综合利用, 2021(5):92-96+85.WANG H W, XU S P, MA K Y, et al. Research on dissolution performance of lower-medium grade high ferrous bauxite[J]. Multipurpose Utilization of Mineral Resources, 2021(5):92-96+85.
WANG H W, XU S P, MA K Y, et al. Research on dissolution performance of lower-medium grade high ferrous bauxite[J]. Multipurpose Utilization of Mineral Resources, 2021(5):92-96+85.
[2] 刘子宁. 拜耳-烧结串联法氧化铝生产工艺简析[J]. 世界有色金属, 2018(21): 7+9.LIU Z N. Brief analysis of alumina production process by Bayer-sintering series process [J]. World Nonferrous Metals, 2018(21): 7+9.
LIU Z N. Brief analysis of alumina production process by Bayer-sintering series process [J]. World Nonferrous Metals, 2018(21): 7+9.
[3] 王恒玉, 赵瑜, 房辉. 石灰对三水铝土矿溶出氧化铝的影响[J]. 湿法冶金, 2020, 39(5):376-379.WANG H Y, ZHAO Y, FANG H. Influence of lime on leaching of alumina in bauxite[J]. Hydrometallurgy of China, 2020, 39(5):376-379.
WANG H Y, ZHAO Y, FANG H. Influence of lime on leaching of alumina in bauxite[J]. Hydrometallurgy of China, 2020, 39(5):376-379.
[4] 王明理, 皮溅清, 王一霖, 等. 广西某地区沉积型和堆积型铝土矿溶出性能分析[J]. 矿冶工程, 2021, 41(4):84-87+92.WANG M L, PI J Q, WANG Y L, et al. Analysis of dissolubility of sedimentary bauxite and accumulative bauxite from Guangxi[J]. Mining and Metallurgical Engineering, 2021, 41(4):84-87+92.
WANG M L, PI J Q, WANG Y L, et al. Analysis of dissolubility of sedimentary bauxite and accumulative bauxite from Guangxi[J]. Mining and Metallurgical Engineering, 2021, 41(4):84-87+92.
[5] 丁国峰, 吕振福. 镓—战略性矿产家族的新成员[J]. 地球, 2021 (4): 62-67.DING G F, LYU Z F. Gallium -- a new member of the strategic mineral family [J]. Earth, 2021(4): 62-67.
DING G F, LYU Z F. Gallium -- a new member of the strategic mineral family [J]. Earth, 2021(4): 62-67.
[6] 满剑奇, 程立媛, 李文慧, 等. 用高温焙烧—盐酸浸出法从粉煤灰中浸出镓[J]. 湿法冶金, 2022, 41(1): 14-19.MAN J Q, CHENG L Y, LI W H, et al. Leaching of gallium from fly ash by high temperature roasting-hydrochloric acid leaching method [J]. Hydrometallurgy of China, 2022, 41(1): 14-19.
MAN J Q, CHENG L Y, LI W H, et al. Leaching of gallium from fly ash by high temperature roasting-hydrochloric acid leaching method [J]. Hydrometallurgy of China, 2022, 41(1): 14-19.
[7] 武秋杰, 吕振福, 曹进成, 等. 国内外镓资源分布供需及镓产业链发展现状研究[J]. 矿产综合利用, 2021(5):38-44.WU Q J, LYU Z F, CAO J C, et al. Study on distribution and supply of gallium resources domestically and abroad and the present situation of the industry chain of gallium[J]. Multipurpose Utilization of Mineral Resources, 2021(5):38-44.
WU Q J, LYU Z F, CAO J C, et al. Study on distribution and supply of gallium resources domestically and abroad and the present situation of the industry chain of gallium[J]. Multipurpose Utilization of Mineral Resources, 2021(5):38-44.
[8] 路梦雨, 王智勇, 戴惠新, 等. 从赤泥中回收钪研究进展[J]. 矿产综合利用, 2021(5):9-16.LU M Y, WANG Z Y, DAI H X, et al. Research progress of recovering scandium from red mud[J]. Multipurpose Utilization of Mineral Resources, 2021(5):9-16.
LU M Y, WANG Z Y, DAI H X, et al. Research progress of recovering scandium from red mud[J]. Multipurpose Utilization of Mineral Resources, 2021(5):9-16.
[9] 董方, 高利坤, 陈龙, 等. 钪的资源及回收提取技术发展现状[J]. 矿产综合利用, 2016(4):21-26.DONG F, GAO L K, CHEN L, et al. Scandium resources and status of scandium extraction and recycling technology[J]. Multipurpose Utilization of Mineral Resources, 2016(4):21-26.
DONG F, GAO L K, CHEN L, et al. Scandium resources and status of scandium extraction and recycling technology[J]. Multipurpose Utilization of Mineral Resources, 2016(4):21-26.
[10] 罗星, 马荣锴, 李勇, 等. 从广西某赤泥中盐酸浸出钪实验研究[J]. 矿冶工程, 2020, 40(2):98-100.LUO X, MA R K, LI Y, et al. Experimental study on hydrochloric acid leaching of scandium from red mud in Guangxi[J]. Mining and Metallurgical Engineering, 2020, 40(2):98-100.
LUO X, MA R K, LI Y, et al. Experimental study on hydrochloric acid leaching of scandium from red mud in Guangxi[J]. Mining and Metallurgical Engineering, 2020, 40(2):98-100.
[11] 赵艺森, 王海芳, 魏阳. 赤泥的综合利用研究进展[J]. 现代化工, 2019, 39(3):55-58.ZHAO Y S, WANG H F, WEI Y. Advances in comprehensive utilization of red mud[J]. Modern Chemical Industry, 2019, 39(3):55-58.
ZHAO Y S, WANG H F, WEI Y. Advances in comprehensive utilization of red mud[J]. Modern Chemical Industry, 2019, 39(3):55-58.
[12] 张海坤, 胡鹏, 姜军胜, 等. 铝土矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2021, 48(1):68-81.ZHANG H K, HU P, JIANG J S, et al. Distribution, genetic types and current situation of exploration and development of bauxite resources[J]. Geology in China, 2021, 48(1):68-81.
ZHANG H K, HU P, JIANG J S, et al. Distribution, genetic types and current situation of exploration and development of bauxite resources[J]. Geology in China, 2021, 48(1):68-81.
[13] 韩一杰, 房晓红, 曾凡桂. 氧化镓在铝土矿中吸附的分子模拟[J]. 煤炭技术, 2016, 35(8):298-299.HAN Y J, FANG X H, ZENG F G, et al. Molecular simulation of gallium oxide adsorption in bauxite[J]. Coal Technology, 2016, 35(8):298-299.
HAN Y J, FANG X H, ZENG F G, et al. Molecular simulation of gallium oxide adsorption in bauxite[J]. Coal Technology, 2016, 35(8):298-299.
[14] 韩一杰. 镓在铝土矿中赋存形态的分子模拟[D]. 太原: 太原理工大学, 2016.HAN Y J. Molecular simulation of the occurrences of gallium in bauxite [D]. Taiyuan: Taiyuan University of Technology, 2016.
HAN Y J. Molecular simulation of the occurrences of gallium in bauxite [D]. Taiyuan: Taiyuan University of Technology, 2016.
[15] 崔保河. 氧化铝生产过程中金属镓回收现状及展望[J]. 轻金属, 2020(12):14-16+39.CUI B H. Current situation and prospect of gallium recovery in alumina production[J]. Light Metals, 2020(12):14-16+39.
CUI B H. Current situation and prospect of gallium recovery in alumina production[J]. Light Metals, 2020(12):14-16+39.
[16] 徐梦, 辛志峰, 李婷, 等. 水热碱溶法从粉煤灰中浸出镓的研究[J]. 矿冶工程, 2016, 36(4):68-71.XU M, XIN Z F, LI T, et al. Extraction of gallium from fly ash by hydrothermal process with alkali dissolution[J]. Mining and Metallurgical Engineering, 2016, 36(4):68-71.
XU M, XIN Z F, LI T, et al. Extraction of gallium from fly ash by hydrothermal process with alkali dissolution[J]. Mining and Metallurgical Engineering, 2016, 36(4):68-71.
[17] 陈福亮, 雷霆, 万多稳, 等. 氧化铝生产过程中金属镓的回收[J]. 云南冶金, 2010, 39(4):40-42.CHEN F L, LEI T, WAN D W, et al. Recycling of metallic gallium in the production of alumina[J]. Yunnan Metallurgy, 2010, 39(4):40-42.
CHEN F L, LEI T, WAN D W, et al. Recycling of metallic gallium in the production of alumina[J]. Yunnan Metallurgy, 2010, 39(4):40-42.
[18] 陈硕, 李兵, 谭海军, 等. 高压密闭消解-ICP-OES法同时测定赤泥中主量、次量与痕量元素[J]. 现代化工, 2021, 41(5):241-244.CHEN S, LI B, TAN H J, et al. Simultaneous determination of major, minor and trace elements in red mud by high-pressure closed digestion and ICP-OES[J]. Modern Chemical Industry, 2021, 41(5):241-244.
CHEN S, LI B, TAN H J, et al. Simultaneous determination of major, minor and trace elements in red mud by high-pressure closed digestion and ICP-OES[J]. Modern Chemical Industry, 2021, 41(5):241-244.
[19] 顾振华, 卿山, 张玉辉, 等. 赤泥特性及资源化应用现状[J]. 应用化工, 2020, 49(8):2087-2090.GU Z H, QING S, ZHANG Y H, et al. Characteristics and comprehensive utilization status of red mud[J]. Applied Chemical Industry, 2020, 49(8):2087-2090.
GU Z H, QING S, ZHANG Y H, et al. Characteristics and comprehensive utilization status of red mud[J]. Applied Chemical Industry, 2020, 49(8):2087-2090.
-