The Mineralogical Properties of Industrial Vermiculite and Its Role in the Srategy of Saving Energy and Reducing CO2 Emission
-
摘要:
基于工业蛭石的化学成分、矿物组成及热学与阳离子交换性等矿物学属性,重点讨论了灼烧膨胀法、插层膨胀法和插层-微波膨胀法对国内不同产地膨胀蛭石膨胀率的影响。结果表明,工业蛭石的矿物组成以金(黑)云母-蛭石间层矿物为主,含少量蛭石或金云母;工业蛭石由于结构中含有蛭石晶层而具有良好的加热或插层膨胀性与阳离子交换性;相对于灼烧加热膨胀法,采用微波膨胀法、插层膨胀法和插层—微波膨胀法可制备结构层不被破坏的高强度柔韧性膨胀蛭石。采用复合插层—微波膨胀法制备的高膨胀率膨胀蛭石为长条蠕虫状多孔轻质材料,膨胀倍数高达36倍,堆积密度仅为0.033 g/cm3,具有优异的轻质、保温和绝热性能。工业蛭石矿产具备战略性新兴矿产的许多特征,具有节能降耗和控制能耗强度并助力碳减排碳达峰的功能,在“双碳”战略和环保节能领域具有重要的作用。
Abstract:Based on the chemical composition, mineral composition and mineralogical properties of industrial vermiculite, such as thermal and cation exchange properties, the effects of the burning expansion method, intercalation expansion method and intercalation-microwave expansion method on the expansion rate of expanded vermiculite are discussed. The results show that the mineral composition of industrial vermiculite is mainly phlogopite-vermiculite or biotite-vermiculite interlayer minerals, with a small amount of vermiculite or phlogopite. The Industrial vermiculite has good heating or intercalation expansion and cation exchange due to the vermiculite crystal layer in the structure. Compared with the burning heating expansion method, the microwave expansion method, the intercalation expansion method and the intercalation-microwave expansion method can be used to prepare high-strength flexible expanded vermiculite without damage to the structural layer. The high expansion rate expanded vermiculite prepared by the intercalation-microwave expansion method is a long worm-like porous lightweight material with an expansion ratio of 36 times and a bulk density of only 0.033 g/cm3. The expanded Vermiculite has excellent light weight, heat preservation and heat insulation properties. Industrial vermiculite minerals have many characteristics of strategic emerging minerals, and have the functions of energy saving and consumption reduction, energy intensity control and carbon emission reduction, and they play an important role in the strategy of Saving energy and reducing CO2 emission.
-
-
表 1 不同产地工业蛭石样品不考虑烧失量归一后的化学成分分析结果
/% Table 1. The chemical composition analysis results of industrial vermiculite samples from different origins without considering the loss on ignition after normalization
样品 SiO2 TiO2 Al2O3 TFe2O3 CaO MgO MnO Na2O K2O 总和 Wvg-1 43.84 1.23 13.45 5.40 0.51 27.15 0.02 1.11 7.28 99.99 Wvg-2 42.57 1.39 13.67 5.92 0.57 27.37 0.04 1.54 6.93 100.00 Wv-14 42.63 1.57 13.82 6.41 1.52 26.89 0.05 0.58 6.14 99.61 NM-1 41.51 1.93 12.61 12.46 2.08 21.88 0.14 0.16 7.25 100.02 HL-1 44.26 1.15 15.54 14.68 2.91 16.17 0.14 0.56 4.59 100.00 HL-2 42.47 1.16 16.80 13.03 3.57 20.12 0.10 0.12 2.63 100.00 表 2 新疆尉犁工业蛭石样品差热(DTA)分析的主要热效应及对应温度
Table 2. The main thermal effects and corresponding temperatures of differential thermal (DTA) analysis of industrial vermiculite samples from Yuli, Xinjiang
样品 热效应及其对应的温度/℃ 吸热谷 吸热谷 吸热谷 放热峰 Wvg-1 80.1 122.9 856.0 881.0 Wv-14 109.8 213.9 853.0 879.8 表 3 新疆尉犁工业蛭石样品热失重(TG)率
/% Table 3. Thermal weight loss (TG) rate of industrial vermiculite samples from Yuli, Xinjiang
样品 室温~70 ℃ 70~100 ℃ 100~200 ℃ 200~300 ℃ 300~555 ℃ 555~1 000 ℃ 室温~1 000 ℃ Wvg-1 1.6 1.9 2.4 0.3 0.6 3.5 10.3 Wv-14 1.8 3.3 5.0 1.4 0.6 4.2 16.3 表 4 新疆尉犁蛭石样品(Wvg-1和Wv-14)的阳离子交换容量
/(mmol·100 g-1) Table 4. The cation exchange capacity of vermiculite samples (Wvg-1 and Wv-14) from Yuli, Xinjiang
样品 K Na Ca Mg CEC Wvg-1 2.420 39.690 20.614 6.353 69.08 Wv-14 1.890 9.421 60.983 7.743 80.04 注:Ca2+、Mg2+的阳离子交换分量折算为一价阳离子。 表 5 不同片径工业蛭石不同膨胀方法获得的膨胀蛭石样品的导热系数
Table 5. Thermal conductivity of expanded vermiculite samples obtained by different expansion methods of industrial vermiculite with different sheet diameters
片径/mm 不同膨胀方法的膨胀蛭石样品的导热系数/(W·m-1·K-1) 灼烧加热法 微波法 插层法 插层微波法 0.3~1 0.115 0.112 0.087 0.090 1~2 - 0.092 - 0.054 2~4 0.096 0.089 0.076 0.063 4~8 0.091 0.085 0.074 0.061 -
[1] 田煦, 周开灿, 文化川. 非金属矿产地质学[M]. 武汉: 武汉工业大学出版社, 1989.
[2] 胡兆扬, 于延棠, 徐立铨. 非金属矿工业手册[M]. 北京: 冶金工业出版社, 1992.
[3] 王丽娟. 蛭石结构改性, 有机插层及微波膨胀研究[D]. 北京: 中国地质大学(北京), 2014.
[4] 王正洲, 杨婷. 膨胀蛭石包覆聚苯乙烯发泡颗粒/水泥复合泡沫材料的制备及性能[J]. 高等学校化学学报, 2018, 39(5): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDXH201805038.htm
[5] 刘福生, 彭同江, 张宝述. 膨胀蛭石的利用及其新进展[J]. 非金属矿, 2001, 24(4): 5-7. doi: 10.3969/j.issn.1000-8098.2001.04.001
[6] RASHAD, ALAA M. Vermiculite as a construction material-A short guide for Civil Engineer[J]. Construction & Building Materials, 2016, 125: 53-62. http://www.onacademic.com/detail/journal_1000039516887110_ff85.html
[7] FREITAS E, ALMEIDA H, VIEIRA M. Binary adsorption of zinc and copper on expanded vermiculite using a fixed bed column[J]. Applied Clay Science, 2017, 146: 503-509. doi: 10.1016/j.clay.2017.07.004
[8] STAWINSKI W, WEGRZYN A, Mordarski G, et al. Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations[J]. Applied Clay Science, 2018, 161: 6-14. doi: 10.1016/j.clay.2018.04.007
[9] 彭同江, 万朴, 潘兆橹等. 新疆尉犁蛭石矿中金云母—蛭石的间层结构研究[J]. 岩石矿物学杂志, 1996, 15(3): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW603.007.htm
[10] 刘福生, 张建洪. 河南灵宝高电荷柯绿泥石的发现与研究[J]. 岩石矿物学杂志, 1997(S1): 23-27.
[11] 彭同江, 黄中熙. 新疆尉犁金云母和金云母—蛭石的成分特征[J]. 地质实验室, 1973, 13(2): 112-117.
[12] 彭同江. 新疆蛭石化学成分研究[J]. 四川建材学院学报, 1992, 7(3): 24-30.
[13] 彭同江, 万朴, 潘兆橹, 等. 新疆尉犁蛭石矿金云母-蛭石间层矿物的热分析谱研究[J]. 西南工学院学报, 1995, 10(4): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX504.002.htm
[14] 王登红. 战略性关键矿产相关问题探讨[J]. 化工矿产地质, 2019, 41(2): 65-72. doi: 10.3969/j.issn.1006-5296.2019.02.001
[15] 解颜岩, 孙红娟, 彭同江, 等. 膨胀蛭石的化学-微波法制备及其膨胀率与柔韧性的关系[J]. 硅酸盐学报, 2020, 48(8): 1325-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202008021.htm
[16] 彭同江, 刘福生, John huang, 等. 含蛭石晶层间层矿物的可交换性阳离子及交换容量研究[J]. 岩石矿物学杂志, 2003, 22(4): 391-396. doi: 10.3969/j.issn.1000-6524.2003.04.016
[17] 彭同江, 孙红娟, 孙金梅, 等. 金云母-蛭石间层矿物阳离子交换容量的影响因素研究[J]. 矿物岩石, 2009, 29(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200901003.htm
[18] 罗利明, 彭同江, 古朝建. CTA+/蛭石插层复合物在乙醇水溶液中一维结构的变化研究[J]. 矿物学报, 2013, 33(6): 433-439. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201303024.htm
[19] 习永广, 彭同江. 膨胀蛭石/石膏复合保温材料的制备与表征[J]. 复合材料学报, 2011, 28(5): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201105026.htm
[20] 钱玉鹏, 江学峰, 贺壹城, 等. 复合法制备高膨胀率膨胀蛭石[J]. 硅酸盐通报, 2017, 36(9): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201709001.htm
[21] XIE Y Y, SUN H J, LUO L M, et al. Preparation of highdiameter-thickness ratio thin-layer phlogopite-vermiculite nano-functional material by liquid phase exfoliation[J]. Applied clay science, 2020, 191(15): 105612. http://www.sciencedirect.com/science/article/pii/S0169131720301770
[22] 汪灵. 战略性非金属矿产的思考[J]. 矿产保护与利用, 2019, 39(6): 1-7. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ee882093-d15e-4912-af75-8c4233707f65
-