-
摘要:
相比LA-ICP-MS锆石U-Pb测年,独居石在一些年轻地质体或流体作用下的矿物定年中更具优势,具有很好的应用前景。然而,大多数独居石Th含量较高(可达7%),包裹体较多,另外随着独居石定年标样不断消耗,存量越来越少,也限制了独居石U-Th-Pb同位素测年的发展与应用。前人利用LA-ICP-MS探究合适的独居石U-Th-Pb测年实验条件,主要是改变激光器的参数,而未对ICP-MS的参数进行系统研究。本文通过改变激光器参数(束斑直径和激光频率)和ICP-MS参数(232Th驻留时间),分别在束斑直径为24μm、16μm和10μm,激光频率为3Hz、4Hz和5Hz,232Th驻留时间为10ms、6ms、3ms和1ms的条件下进行U-Th-Pb测年。最后以独居石RW-1为标样,对独居石样品Bananeira进行校正,期望得到独居石U-Th-Pb测年的最佳条件。结果表明:束斑直径为16μm,232Th驻留时间为3ms或1ms,能量密度为4J/cm2,激光频率为5Hz,载气He流速为0.35L/min,载气Ar流速为0.95L/min的实验条件下适合独居石测年,这两种条件下Bananeira的207Pb/235U加权平均年龄分别为510.7±8.6Ma(MSWD=0.87)、513.8±5.7Ma(MSWD=0.38,推荐值507.7±1.3Ma),误差在0.59%和1.20%左右;208Pb/232Th加权平均年龄分别为496.9±8.6Ma(MSWD=0.596)、499.8±5.6Ma(MSWD=0.37,推荐值497.6±1.6Ma),误差在0.14%和0.44%左右。并利用此条件对黄山花岗岩(HS-1)进行独居石U-Th-Pb测年,其207Pb/235U加权平均值在128.3±2.4Ma(MSWD=0.73),与本次测定该岩体的锆石年龄数据(127.0±2.1Ma,MSWD=0.93)在误差范围内一致,验证了本实验建立的独居石U-Th-Pb定年方法可靠。
-
关键词:
- LA-ICP-MS /
- 独居石U-Th-Pb测年 /
- 激光束斑 /
- 232Th驻留时间
Abstract:BACKGROUND Compared with zircon U-Pb dating, monazite has more advantages in the dating of some metamorphic rocks or highly differentiated rocks. However, the U-Th-Pb isotopic dating of monazite has been limited, because of high Th concentration (commonly>7%), many mineral inclusions, and rare dating standard samples. Previous research on LA-ICP-MS U-Th-Pb dating of monazite mainly focused on laser parameters, and lacked attention on ICP-MS conditions.
OBJECTIVES To find suitable experimental LA-ICP-MS monazite dating conditions.
METHODS Using 193nm ArF excimer laser ablation system and Agilent 7500a inductively coupled plasma-mass spectrometer, laser parameters (laser beam spot diameter and laser frequency) and ICP-MS parameters(dwelling time of 232Th) were investigated. The laser beam spot diameter was set to 24μm, 16μm and 10μm, and the laser frequency was set to 3Hz, 4Hz and 5Hz. The dwelling time of 232Th was set to 10ms, 6ms, 3ms and 1ms for U-Th-Pb dating. Finally, the monazite sample RW-1 was used as the standard sample to calibrate the monazite sample Bananeira.
RESULTS It was suitable for monazite dating when the beam spot diameter was 16μm, the dwelling time of 232Th was 3ms or 1ms, the energy density was 4J/cm2, the laser frequency was 5Hz, the carrier gas (He) flow rate was 0.35L/min, and the carrier gas (Ar) flow rate was 0.95L/min. Under these conditions, Bananeira's weighted average ages of 207Pb/235U were 510.7±8.6Ma (MSWD=0.87), and 513.8±5.7Ma (MSWD=0.38), which were consistent with the recommended age of 507.7±1.3Ma with respective errors of 0.59% and 1.20%. 208Pb/232Th weighted average ages were 496.9±8.6Ma (MSWD=0.596) and 499.8±5.6Ma (MSWD=0.37), which were consistent with the recommended age of 497.6±1.6Ma, with respective errors of 0.14% and 0.44%. The 207Pb/235U weighted average age of Huangshan sample HS-1 was 128.3±2.4Ma (MSWD=0.73), which were close to the zircon age of 127.0±2.1Ma (MSWD=0.93) in the Huangshan area.
CONCLUSIONS The optimal laser and ICP-MS conditions are suitable for monazite U-Th-Pb isotopic age determination.
-
Key words:
- LA-ICP-MS /
- monazite U-Th-Pb isotopic dating /
- laser spot /
- dwelling time of 232Th
-
-
表 1 LA-ICP-MS仪器测量工作参数
Table 1. Measurement parameters of LA-ICP-MS instrument
LA(激光器)工作参数 实验条件 激光波长 193nm 脉冲频率 5/4/3Hz 能量密度 4J/cm2 束斑直径 24/16/10μm 载气(He)流速 0.35L/min ICP-MS工作参数 实验条件 采样深度 5.2mm 射频功率 1300W 冷却气流速 15L/min 辅助气(Ar)流速 1L/min 载气(Ar)流速 0.95L/min 信号采集时间 50s 232Th驻留时间 10/6/3/1ms 238U驻留时间 50ms 204Pb驻留时间 10ms 206Pb驻留时间 100ms 207Pb驻留时间 200ms 208Pb驻留时间 10ms 表 2 不同条件下独居石样品Bananeira的加权平均年龄值及分馏系数
Table 2. Analytical results of U-Th-Pb age and fractionation factor of monazite sample Bananeira by LA-ICP-MS under specific conditions
LA-ICP-MS工作参数 207Pb/235U单点年龄范围(Ma) 207Pb/235U ±2σ (Ma) 与推荐值相比误差大小(%) 206Pb/238U单点年龄范围(Ma) 206Pb/238U ±2σ (Ma) 与推荐值相比误差大小(%) 206Pb/238U分馏系数(%) 208Pb/232Th单点年龄范围(Ma) 208Pb/232Th ±2σ (Ma) 与推荐值相比误差大小(%) 208Pb/232Th分馏系数(%) 24μm,3Hz,10ms (n=19) 479~514 495.5±5.1 -2.32 487~504 494.0±5.7 -3.82 1.9 483~501 490.5±5.6 -1.43 1.2 16μm,5Hz,10ms (n=18) 492~540 509.1±9.4 0.27 497~516 511.4±8.5 -0.42 1.3 497-522 507.9±8.8 2.06 2.3 10μm,4Hz,10ms (n=23) 466~523 482.9±5.7 -4.88 486~503 493.3±5.5 -3.95 0.1 459~488 471.6±5.0 -5.23 1.7 16μm,5Hz,6ms (n=19) 490~591 510.2±6.2 0.49 494~540 514.4±6.1 0.16 1.0 485~541 511.5±8.6 2.79 2.3 16μm,5Hz,3ms (n=9) 495~537 510.7±8.6 0.59 489~515 499.8±8.7 -2.69 3.7 484~508 496.9±8.6 -0.14 2.3 16μm,5Hz,1ms (n=20) 502~545 513.8±5.7 1.20 485~515 499.9±5.6 -2.67 1.0 486~512 499.8±5.6 0.44 < 0.1 样品Bananeira推荐值 ID-TIMS: 507.7±1.3Ma ID-TIMS: 513.6±1.2Ma LA-MC-ICP-MS: 497.6±1.6Ma 表 3 黄山样品(HS-1)的LA-ICP-MS锆石U-Pb年龄分析结果
Table 3. LA-ICP-MS zircon U-Pb dating results for Huangshan sample (HS-1)
HS-1分析点号 232Th (×10-6) 238U (×10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U年龄(Ma) 206Pb/238U年龄(Ma) 208Pb/232Th年龄(Ma) 比值 ±1σ 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄 ±1σ 年龄 ±1σ 年龄 ±1σ 1 462 929 0.49 0.0508 0.0021 0.1349 0.0055 0.0192 0.0005 0.0061 0.0002 129 4.9 123 3.3 124 4.6 2 313 601 0.52 0.0502 0.0025 0.1335 0.0063 0.0184 0.0006 0.0064 0.0002 127 5.6 124 3.5 129 4.9 3 412 820 0.50 0.0503 0.0022 0.1360 0.0060 0.0197 0.0006 0.0062 0.0002 129 5.3 126 3.5 125 4.8 4 398 899 0.44 0.0521 0.0023 0.1425 0.0061 0.0200 0.0006 0.0067 0.0003 135 5.4 127 3.6 134 5.0 5 348 603 0.57 0.0547 0.0023 0.1508 0.0062 0.0200 0.0006 0.0066 0.0002 143 5.4 128 3.4 133 4.7 6 201 506 0.39 0.0507 0.0023 0.1368 0.0060 0.0197 0.0006 0.0066 0.0002 130 5.4 126 3.5 132 4.9 7 188 355 0.52 0.0533 0.0030 0.1433 0.0072 0.0198 0.0006 0.0070 0.0003 136 6.4 126 3.7 141 5.5 8 399 806 0.49 0.0526 0.0022 0.1424 0.0057 0.0194 0.0005 0.0066 0.0002 135 5.1 124 3.5 132 4.7 9 145 242 0.59 0.0520 0.0025 0.1524 0.0074 0.0212 0.0007 0.0060 0.0003 144 6.4 135 4.3 122 5.2 10 163 212 0.76 0.0636 0.0038 0.1740 0.0096 0.0204 0.0006 0.0076 0.0003 163 8.3 130 4.0 153 6.1 11 119 165 0.72 0.0698 0.0044 0.1897 0.0116 0.0201 0.0006 0.0073 0.0003 176 9.9 128 3.8 148 5.9 12 133 199 0.66 0.0701 0.0035 0.1972 0.0095 0.0208 0.0006 0.0077 0.0003 183 8.1 133 3.9 154 6.2 表 4 黄山样品(HS-1)LA-ICP-MS独居石U-Th-Pb年龄分析结果
Table 4. LA-ICP-MS monazite U-Th-Pb dating results for Huangshan sample (HS-1)
HS-1分析点号 232Th (×10-6) 238U (×10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/ 232Th 207Pb/235U年龄(Ma) 206Pb/238U年龄(Ma) 208Pb/232Th年龄(Ma) 比值 ±1σ 比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄 ±1σ 年龄 ±1σ 年龄 ±1σ 1 14737 1448 10.17 0.0477 0.0021 0.1351 0.0058 0.0212 0.0008 0.0063 0.0001 129 5.1 135 5.3 128 2.8 2 90110 1899 47.45 0.0539 0.0057 0.1558 0.0179 0.0209 0.0005 0.0065 0.0001 147 15.8 133 3.0 132 2.9 3 8699 969 8.97 0.0513 0.0025 0.1400 0.0067 0.0200 0.0005 0.0063 0.0001 133 6.0 128 2.9 127 2.8 4 76018 1540 49.36 0.0609 0.0022 0.1752 0.0064 0.0209 0.0005 0.0064 0.0001 164 5.6 133 2.9 128 2.7 5 12920 1403 9.20 0.0488 0.0019 0.1378 0.0056 0.0205 0.0005 0.0064 0.0001 131 5.0 131 2.9 129 2.8 6 61612 1236 49.82 0.0536 0.0029 0.1471 0.0076 0.0203 0.0005 0.0065 0.0001 139 6.8 130 3.0 130 2.8 7 82496 2223 37.10 0.0496 0.0017 0.1373 0.0047 0.0201 0.0004 0.0065 0.0001 131 4.2 128 2.8 131 2.8 8 58849 782 75.24 0.0655 0.0032 0.1922 0.0092 0.0216 0.0005 0.0065 0.0001 178 7.8 138 3.3 132 2.8 9 26975 1527 17.66 0.0483 0.0020 0.1306 0.0052 0.0198 0.0005 0.0061 0.0001 125 4.6 126 2.9 122 2.7 10 60598 1296 46.74 0.0532 0.0025 0.1514 0.0067 0.0210 0.0005 0.0065 0.0001 143 5.9 134 3.0 131 2.8 11 83898 2148 39.05 0.0529 0.0020 0.1540 0.0060 0.0211 0.0005 0.0066 0.0001 145 5.2 135 3.0 132 2.8 12 107300 4797 22.36 0.0480 0.0014 0.1309 0.0038 0.0198 0.0004 0.0066 0.0001 125 3.4 127 2.8 133 2.8 13 21830 1634 13.36 0.0501 0.0022 0.1404 0.0060 0.0206 0.0005 0.0066 0.0001 133 5.3 131 3.0 132 2.9 14 24883 1008 24.68 0.0533 0.0025 0.1525 0.0073 0.0207 0.0005 0.0067 0.0001 144 6.5 132 3.0 134 2.9 15 38800 2070 18.74 0.0458 0.0018 0.1313 0.0052 0.0209 0.0005 0.0070 0.0001 125 4.7 134 3.1 141 3.1 16 11495 1419 8.10 0.0502 0.0022 0.1394 0.0059 0.0204 0.0005 0.0066 0.0001 133 5.2 130 3.0 132 3.0 17 64585 1648 39.19 0.0484 0.0020 0.1357 0.0055 0.0206 0.0005 0.0064 0.0001 129 4.9 132 3.0 130 2.8 18 72333 2071 34.92 0.0752 0.0029 0.2185 0.0089 0.0211 0.0005 0.0065 0.0001 201 7.4 134 3.0 131 2.9 19 23523 1643 14.31 0.0737 0.0033 0.1783 0.0075 0.0184 0.0006 0.0060 0.0001 167 6.5 118 3.5 121 2.9 20 76446 1456 52.49 0.0734 0.0023 0.2125 0.0068 0.0210 0.0005 0.0065 0.0001 196 5.7 134 3.0 131 2.8 21 117613 4410 26.67 0.0494 0.0015 0.1342 0.0041 0.0197 0.0004 0.0065 0.0001 128 3.7 136 2.7 131 2.8 22 125333 5058 24.77 0.0481 0.0014 0.1314 0.0038 0.0199 0.0004 0.0066 0.0001 125 3.4 137 2.7 133 2.8 23 41657 1197 34.80 0.0559 0.0025 0.1578 0.0070 0.0207 0.0005 0.0065 0.0001 149 6.1 132 3.0 130 2.8 24 16645 4031 4.12 0.0494 0.0015 0.1308 0.0040 0.0193 0.0004 0.0063 0.0001 125 3.6 123 2.7 126 2.7 -
[1] Williams M L, Jercinovic M J, Hetherington C J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth and Planetary Sciences, 2007, 35(1): 137-175. doi: 10.1146/annurev.earth.35.031306.140228
[2] Chiaradia M, Schaltegger U, Spikings R, et al. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?-An invited paper[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2013, 108(4): 565-584. doi: 10.2113/econgeo.108.4.565
[3] Wu Y B, Wang H, Gao S, et al. LA-ICP-MS monazite U-Pb age and trace element constraints on the granulite-facies metamorphism in the Tongbai Orogen, central China[J]. Journal of Asian Earth Sciences, 2014, 82: 90-102. doi: 10.1016/j.jseaes.2013.12.016
[4] Hogdahl K, Majka J, Sjostrom H, et al. Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: Implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden[J]. Contributions to Mineralogy and Petrology, 2012, 163(1): 167-188. doi: 10.1007/s00410-011-0664-x
[5] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 1077-1094, 1064, 1066. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
Wu L G, Li X H. Isotopic and elemental analysis of monazite and its geological application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1077-1094, 1064, 1066. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006003.htm
[6] Meldrum A, Boatner L A, Weber W J, et al. Radiation damage in zircon and monazite[J]. Geochimica Et Cosmochimica Acta, 1998, 62(14): 2509-2520. doi: 10.1016/S0016-7037(98)00174-4
[7] Liu X C, Wu F Y, Yu L J, et al. Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J]. Tectonophysics, 2016, 667: 163-175. doi: 10.1016/j.tecto.2015.12.001
[8] 胡国辉, 周艳艳, 张拴宏, 等. 吕梁地区古元古代花岗片麻岩成因及变质时代: 锆石和独居石U-Pb年龄及锆石Hf同位素证据[J]. 岩石学报, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05
Hu G H, Zhou Y Y, Zhang S H, et al. Petrogenesis and metamorphic age of Palaeoproterozoic granitic gneisses in Lüliang area: Constraints from zircon and monazite U-Pb ages and Hf isotopes[J]. Acta Petrologica Sinica, 2020, 36(12): 3631-3653. doi: 10.18654/1000-0569/2020.12.05
[9] Barnes C, Majka J, Schneider D, et al. High-spatial re-solution dating of monazite and zircon reveals the timing of subduction-exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides)[J]. Contributions to Mineralogy and Petrology, 2019, 174(1): 5. doi: 10.1007/s00410-018-1539-1
[10] Skipton D R, Schneider D A, Mcfarlane C, et al. Multi-stage zircon and monazite growth revealed by depth profiling and in situ U-Pb geochronology: Resolving the Paleoproterozoic tectonics of the Trans-Hudson Orogen on southeastern Baffin Island, Canada[J]. Precambrian Research, 2016, 285: 272-298. doi: 10.1016/j.precamres.2016.09.002
[11] 王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011
Wang J D, Li Z D, Zhang Q, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in east Qinling: Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011
[12] Lehmann B, Zoheir B A, Neymark L A, et al. Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield[J]. Gondwana Research, 2020, 84: 71-80. doi: 10.1016/j.gr.2020.03.001
[13] Yan T, Liu D, Si C, et al. Coupled U-Pb geochronology of monazite and zircon for the Bozhushan batholith, southeast Yunnan Province, China: Implications for regional metallogeny[J]. Minerals, 2020, 10(3): 239-253. doi: 10.3390/min10030239
[14] Martial F T, Rigobert T, Anne S A, et al. Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah Leucogranite (northern Cameroon): Constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite[J]. Minerals, 2018, 8(5): 2-36. http://www.mdpi.com/2075-163X/8/5/188
[15] Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICP-MS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J]. Geochimica Et Cosmochimica Acta, 1996, 60(24): 5063-5073. doi: 10.1016/S0016-7037(96)00287-6
[16] Paquette J L, Tiepolo M. High resolution (5μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J]. Chemical Geology, 2007, 240(3-4): 222-237. doi: 10.1016/j.chemgeo.2007.02.014
[17] 王倩, 侯可军. 独居石LA-ICP-MS微区原位U-Pb同位素年龄测定[J]. 地质学报, 2015, 89(10): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1018.htm
Wang Q, Hou K J. LA-ICP-MS in situ U-Pb isotopic dating of monazite[J]. Acta Geologica Sinica, 2015, 89(10): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1018.htm
[18] 汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-367. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.003
Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-367. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.003
[19] 洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009
Hong W X, Zhu X K. Study on the composition distribution of monazite particles[J]. Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009
[20] Richter M, Nebel-Jacobsen Y, Nebel O, et al. Assess-ment of five monazite reference materials for U-Th/Pb dating using laser-ablation ICP-MS[J]. Geosciences, 2019, 9(9): 391-412. doi: 10.3390/geosciences9090391
[21] Kohn M J, Vervoort J D. U-Th-Pb dating of monazite by single collector ICP-MS: Pitfalls and potential[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): 1-16. http://www.researchgate.net/profile/J_Vervoort/publication/228353412_U-Th-Pb_dating_of_monazite_by_single-collector_ICP-MS_Pitfalls_and_potential/links/540488840cf2bba34c1ca025
[22] Gilbert S, Olin P, Thompson J, et al. Matrix dependency for oxide production rates by LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 638-646. doi: 10.1039/C6JA00395H
[23] 崔玉荣, 周红英, 耿建珍, 等. LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定[J]. 地球学报, 2012, 33(6): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206004.htm
Cui Y R, Zhou H Y, Geng J Z, et al. In situ LA-MC-ICP-MS U-Pb isotopic dating of monazite[J]. Acta Geoscientica Sinica, 2012, 33(6): 865-876. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201206004.htm
[24] Ling X X, Magdalena H, Huyskens, et al. Monazite RW-1: A homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis[J]. Mineral Petrology, 2017, 111(2): 163-172. doi: 10.1007/s00710-016-0478-7
[25] Gonçalves O G, Lana C, Scholz R, et al. An assessment of monazite from the Itambé pegmatite district for use as U-Pb isotope reference material for microanalysis and implications for the origin of the "Moacyr" monazite[J]. Chemical Geology, 2016, 424: 30-50. doi: 10.1016/j.chemgeo.2015.12.019
[26] Kylander-Clark A, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99-112. doi: 10.1016/j.chemgeo.2013.02.019
[27] Xue H M, Wang Y G, Ma F, et al. Zircon U-Pb SHRIMP ages of the Taiping (calc-alkaline)-Huangshan (alkaline) composite intrusion: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton, China[J]. Science in China, 2009, 52(11): 1756-1770. doi: 10.1007/s11430-009-0133-9
[28] Wu F Y, Ji W Q, Sun D H, et al. Zircon U-Pb geo-chronology and Hf isotopic compositions of the Mesozoic granites in southern Anhui Province, China[J]. Lithos, 2012, 150: 6-25. doi: 10.1016/j.lithos.2012.03.020
[29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[30] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petroleum Science and Engineering, 2010, 51(1-2): 537-571. http://www.ingentaconnect.com/content/oup/petroj/2010/00000051/F0020001/art00023
[31] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[32] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501001.htm
Wu F Y, Liu Z C, Liu X C, et al. Himalayan leucogranite[J]. Acta Petrologica Sinica, 2015, 31(1): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501001.htm
[33] Susanne B, Felix O, Martin M. Th-Pb versus U-Pb isotope systematics in allanite from cogenetic rhyolite and granodiorite: Implications for geochronology[J]. Earth & Planetary Science Letters, 1994, 124(1-4): 149-159. http://www.onacademic.com/detail/journal_1000035301553410_bd93.html
[34] Grand'Homme A, Janots E, Bosse V, et al. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): Evidence from a large-scale regional study in clefts from the western Alps[J]. Mineralogy & Petrology, 2016, 110(6): 787-807. doi: 10.1007/s00710-016-0451-5
[35] 周红升, 马昌前, 张超, 等. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类: 年代学、地球化学及其启示[J]. 岩石学报, 2008, 24(1): 49-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801005.htm
Zhou H S, Ma C Q, Zhang C, et al. Yanshanian alnminons A-type granitoids in the Chunshui of Biyang, south margin of North China Craton: Implications from petrology, geochronology and geochemistry[J]. Acta Petrologica Sinica, 2008, 24(1): 49-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801005.htm
[36] 张舒, 张招崇, 艾羽, 等. 安徽黄山花岗岩岩石学、矿物学及地球化学研究[J]. 岩石学报, 2009, 25(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901004.htm
Zhang S, Zhang Z C, Ai Y, et al. The petrology, mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J]. Acta Petrologica Sinica, 2009, 25(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901004.htm
[37] 薛怀民, 汪应庚, 马芳, 等. 高度演化的黄山A型花岗岩: 对扬子克拉通东南部中生代岩石圈减薄的约束?[J]. 地质学报, 2009, 83(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902011.htm
Xue H M, Wang Y G, Ma F, et al. The Huangshan A-type granites with tetrad REE: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze Craton?[J]. Acta Geologica Sinica, 2009, 83(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902011.htm
[38] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy & Petrology, 2002, 143(5): 602-622. http://www.researchgate.net/file.PostFileLoader.html?id=584a53c2ed99e135f21a22b1&assetKey=AS%3A437275931746304%401481266114830
-