Properties, Origin and Evolution of Ore-forming Fluids from Longhua Ni-Co Deposit, Jinxiu County, Guangxi
-
摘要: 广西金秀县龙华镍钴矿床是近年来获得较多关注的热液型镍钴矿床,对于其形成过程,尤其是成矿流体来源与演化方面的详细报道较少。龙华镍钴矿床的矿化过程从早到晚可分为石英-红砷镍矿-辉砷镍矿、石英-辉砷镍矿、石英-镍黄铁矿-黄铁矿等三个成矿阶段,对代表成矿各阶段的伴生透明矿物石英中的流体包裹体进行了岩相学观察及显微测温,结果显示龙华镍钴矿床早成矿阶段流体均一温度为121~235℃,盐度主要为7.86~35.87 wt% NaCl,主成矿阶段均一温度为135~223 ℃,盐度主要为13.77~35.87 wt% NaCl.,晚成矿阶段均一温度为96~180 ℃,盐度为3.21~26.64 wt% NaCl。成矿流体具有中低温、中高盐度特征,结合成矿流体的氢氧同位素组成特征,初步判断矿床成矿流体主要来源于循环萃取了富镍地层中成矿物质的大气降水演变而成的含矿热卤水,同时混合有少量岩浆水和大气水,流体混合和流体冷却作用是导致该矿床镍钴矿物沉淀的重要因素。金秀镍钴矿床属新型中低温、中高盐度的热液充填型镍钴矿床。Abstract: The Longhua Ni-Co deposit in Jinxiu County is a hydrothermal Ni-Co deposit that has attracted considerable attention in recent years. There are seldom detailed reports on its formation process, especially on the origin and evolution of the ore-forming fluids. The ore-forming process in the Longhua deposit can be divided into at least three stages, aka quartz - nickeline - gersdorffite stage, quartz - gersdorffite stage, quartz - pentlandite - pyrite stage, the fluid inclusions in the associated transparent mineral quartz representing each mineralization stage have been observed by petrography and micro thermometry. The fluid homogenization temperature during the early mineralization stage of the Longhua Ni-Co deposit is 121~235 ℃, with salinity mainly ranging from 7.86 wt% NaCl to 35.87 wt% NaCl. The homogenization temperature during the main mineralization stage is 135~223 ℃, with salinity mainly ranging from 13.77 wt% NaCl to 35.87 wt% NaCl. The homogenization temperature during the late mineralization stage is 96~180℃, and the salinity is 3.21~26.64 wt% NaCl. The ore-forming fluid shows the characteristics of low to medium temperature and medium to high salinity. Combined with the hydrogen and oxygen isotope characteristics, it could be indicated that the ore-forming fluid is mainly derived from the ore-bearing hot brine that evolved from atmospheric precipitation that circulates and extracts the ore-forming materials from the Ni-rich strata, mixed with a small amount of magma and atmospheric water, and the fluid mixing and fluid cooling are the important factors leading to the precipitation of Ni-Co minerals in the deposit. The Jinxiu Ni-Co deposit belongs to a new type of hydrothermal filling deposit with low to medium temperature and high salinity.
-
Key words:
- ore-forming fluid /
- fluid evolution /
- ore genesis /
- Longhua Ni-Co deposit /
- Jinxiu County, Guangxi
-
-
[1] 娄德波,孙艳,山成栋,孙嘉,肖克炎. 2018. 中国镍矿床地质特征与矿产预测[J].地学前缘,25(3):67-81.
[2] 黄勇勤,程峰,王喜生,钟志标,李泽江,蔡海聪,宁夏,杨富强,吴特贇,覃兴涛. 2017.广西金秀地区1∶5 万头排、新圩、金秀县和夏宜幅矿产远景调查报告[R].广西:广西壮族自治区地球物理勘察院.
[3] 姜修道,魏钢锋,聂江涛.2010.煎茶岭镍矿—是岩浆还是热液成因[J].矿床地质,29(6):1112-1124.
[4] 李欣航,白令安,胡乔帆,谢兰芳,庞保成,岳志恒.2023.桂西北金牙金矿床成矿流体性质与成矿机制[J].吉林大学学报(地球科学版),53(3):840-852.
[5] 李振华,金玺,黄寅,张淑玲.2010.广西镍矿成因类型浅析[J].南方国土资源,(2):31-35.
[6] 刘金龙, 李伫民, 周永恒, 王力, 王冠, 姜平, 陈良玺, 董存杰.2023.镍矿床分布、成矿背景和开发现状[J].中国地质,50(1):118-132.
[7] 刘珂辛,钟康惠,张勇强. 2013.西藏班戈县玉古拉镍矿床成因类型对比研究[J].矿物学报,33(S2):114-115.
[8] 刘民武.2003.中国几个镍矿床的地球化学比较研究[D].西北大学博士学位论文.
[9] 刘伟,周守佘,方科.2016.广西大瑶山地区金秀新型镍钴矿床构造环境分析与物源探讨[A]//第十三届全国矿床会议.
[10] 卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社.
[11] 邵洁连.1988.金矿找矿矿物学[M].武汉:中国地质大学出版社.
[12] 汤中立,闫海卿,焦建刚,李小虎.2006.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质,25(1):1-9.
[13] 谢燮,李文渊,高永宝,张照伟,郭周平.2014.祁连山拉水峡铜镍硫化物矿床矿物学、地球化学及成因[J].地质与勘探, 50(4):617-629.
[14] 熊松泉,康志强,冯佐海,庞崇进,方贵聪,张青伟,吴佳昌,蒋兴洲.2015.广西大瑶山地区大进岩体的锆石U-Pb 年龄、地球化学特征及其地质意义[J].桂林理工大学学报,35(4):736-746.
[15] 熊伊曲.2014.滇西墨江金厂热液金镍矿床成矿作用[D].中国地质大学(北京)硕士学位论文.
[16] 曾瑞垠,姜华,祝新友,张雄,肖剑,吕晓强,胡川,杨晓坤,李金林,郑泽光.2021.云南东川铜矿床流体演化与成矿机制研究[J].现代地质,35(1):244-257.
[17] 曾瑞垠,祝新友,王蓉,朱政坤,蒋斌斌,张雄,孙宁,郑长友,岳鹏军.2022. 刚果(金)Luiswishi 铜钴矿床流体包裹体特征与成矿机制[J].矿物学报,42(6):719-731.
[18] 周守余,黄长帅,刘伟,方科,吴继炜.2016.广西大瑶山地区金秀新型镍钴矿床成因探讨[A]//第十三届全国矿床会议.
[19] 周云,段其发,曹亮,甘金木,向学敏.2015.湘西后坪沉积型镍钼多金属矿床地球化学特征研究及矿床成因探讨[J].有色金属(矿山部分),67(2):29-33.
[20] 周云,段其发,曹亮,彭三国,甘金木.2017a.湖南花垣地区铅锌矿床稀土元素地球化学特征初步研究[J].华南地质与矿产,33(3): 282-292.
[21] 周云,唐菊兴,黄勇,郎兴海,于玉帅.2017b.西藏雄村铜金矿床流体包裹体显微测温与特征元素测定[J].矿床地质,36(5):1039-1056.
[22] 周云,段其发,曹亮,于玉帅,彭三国,甘金木,李堃,黄惠兰,李芳.2018.湘西花垣地区铅锌矿床流体包裹体显微测温与特征元素测定[J].地球科学,43(7):2465-2483.
[23] 周云,黄惠兰,于玉帅,李芳,谭靖.2021.湖南锡田钨锡多金属矿床流体包裹体显微测温和LA-ICP-MS 原位分析对成矿流体演化的制约[J]. 地球科学,46(4):1248-1268.
[24] 赵克强,孙景贵,程琳,马生明,王振亮,古阿雷.2023.内蒙古白土营子钼矿床成矿年代学及成矿流体特征[J].吉林大学学报(地球科学版),53(3):822-839.
[25] 张笑天,孙景贵,韩吉龙,王抒,余日东,刘阳,冯洋洋.2023.吉林夹皮沟金矿集区三道岔金矿床成矿流体来源与演化[J].吉林大学学报(地球科学版),53(3):748-766.
[26] 张波,杨英,梁磊,高嵛飞,曹军,谭杰.2020.广西金秀县龙华镍钴铜矿阶段性详查报告[R].广西:中国有色桂林矿产地质研究院有限公司.
[27] Arndt N, Lesher M, Czamanske G K. 2005. Mantle-derived Magmas and Magmatic Ni-Cu-(PGE) Deposits[J]. Economic Geology, 100: 5-23.
[28] Dalvi D A, Bacon W G, Osborne R C. 2010. The Past and the Future of Nickel Laterites[A]// PDAC 2004 International Convention, Trade Show & Investors Exchange, 1-27.
[29] Ernst R E, Jowitt S. 2013. Large igneous provinces (LIPs) and metallogeny[M]: Society of economic geologists special publication, 17: 17-51.
[30] Gonzalez A I, Pirajno F, Kerrich R. 2013. Hydrothermal nickel deposits: Secular variation and diversity[J]. Ore Geology Reviews, 52: 1-3.
[31] Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H2O solution [J]. Economic Geology, 83: 197-202.
[32] Hitzman M W, Kirkham R, Broughton D. 2005. The sediment-hosted stratiform copper ore system[M]. Economic Geology 100th Anniversary Volume, 609-642.
[33] Hitzman M W, Selley D, Bull S. 2010. Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History[J]. Economic Geology, 105(3): 627-639.
[34] Huang W T, Wu J, Liang H Y, Chen X L, Zhang J, Ren L. 2020. Geology, Geochemistry and genesis of the Longhua low-temperaturehydrothermal Ni-Co arsenide deposit in sedimentary rocks, Guangxi, South China[J]. Ore Geology Reviews, 52: 1-3.
[35] Jiang S Y, Chen Y Q, Ling H F, Yang J H, Feng H Z, Ni P. 2006. Trace and rare earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineral Deposita, 41(5): 453-467.
[36] Kesler S E. 2005.Ore-Forming Fluids[J]. Elements, 1(1): 13-18.
[37] Naldrett A J. 1997. Key factors in the genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s Bay and other world-class Ni-Cu-PGE deposits: implications for exploration [J]. Australian Journal of Earth Sciences, 44: 283-315.
[38] Roedder E. 1984. Fluid Inclusions[J]. Reviews in Mineralogy and Geochemistry, 12: 1-644.
[39] Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 55: 229-272.
-
计量
- 文章访问数: 666
- PDF下载数: 69
- 施引文献: 0