New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau
-
摘要: 当今世界处于百年未有之大变局中,各国对战略性矿产资源的需求显著增加。加强国内战略性矿产勘查,保障战略性矿产资源的安全供给,成为了目前的紧迫任务。东特提斯成矿域内的冈底斯-喜马拉雅造山系位于青藏高原南部边缘,是解剖和理解新特提斯洋俯冲消亡、亚洲-印度大陆碰撞与大规模成矿作用的关键地区。本文在综合分析高原南部冈底斯-喜马拉雅造山系地质构造演化与大规模成矿作用的基础上,对冈底斯、雅鲁藏布江和喜马拉雅等重点成矿带战略性矿产的种类与主要类型以及近年来的地质找矿工作取得的主要进展进行了系统总结,提出新生代以来大规模的壳幔相互作用与构造-岩浆演化过程导致了高原南部以铜、铬、金和铍稀有金属等为特色的战略性矿产资源高度富集,并认为该地区在我国急缺战略性矿产资源的资源配置中居重要地位,形成了驱龙-甲玛、朱诺、罗布莎、扎西康等多个大型矿集区,是建设我国未来战略性矿产资源接续基地的重点地区。通过对该地区各战略性矿产资源潜力的分析,提出了下一步找矿工作的重点和方向,除开展矿集区深部及外围找矿外,还应该加强新类型与新矿种的寻找。Abstract: In recent one hundred years, the world has been undergoing great changes and the demand for strategic mineral resources has increased significantly. At present, an urgent task for China is to strengthen domestic strategic mineral exploration and ensure the supply of strategic mineral resources safely. The Gangdise-Himalayan orogenic belt, located at the southern edge of the Qinghai-Tibet Plateau, is the key area for understanding the subduction of the Neo-Tethys oceanic crust, and the continental collision and large-scale metallogenesis between Asian and Indian plates. With the aid of analysis of the geologic and tectonic evolution and large-scale mineralization of the Gangdise-Himalayan orogeny, this study has systematically summarized the main types of strategic minerals and the important progresses of mineral prospecting in key metallogenic belts in Gangdise, Yarlung Zangbo Suture zone and Himalaya. The large-scale crust-mantle interaction and tectonic-magmatic evolution since the Cenozoic have resulted in the high enrichments of strategic mineral elements such as Cu, Cr, Au and Be. The Gangdise-Himalayan orogenic belt will play an important role in the resource allocation of strategic mineral resources of China, and several large ore concentration areas such as Qulong-Jiama, Junuo, Luobusha and Zhaxikang, are delineated as the key areas for the construction of strategic mineral succession resources bases in China. The emphasis of the future exploration should be on the explaration of new ore types and new mineral species in the deeper levels of existing deposits and the peripheries of the ore concentration areas.
-
-
European Union, 2018. Critical raw materials and the circular economy[R]. Affiliation: European Commission.
GulleyA L, Nassar N T, Xun S A, 2018. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4111-4115.
Hou Z-Q, Duan L-F, Lu Y-J, et al., 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J]. Economic Geology, 110(6): 1541-1575.
Hou Z-Q, Zheng Y-C, Zeng L-S, et al., 2012. Eocene-Oligocene granitoids in southern Tibet: constraints on crustal anatexis and tectonic evolution of the Himalayan orogen[J]. Earth and Planetary Science Letters, 349-350: 38-52.
Li Y, Selby D, Condon D,et al., 2017. Cyclic magmatic-hydrothermal evolution in porphyry systems: High-precision U-Pb and Re-Os geochronology constraints on the Tibetan Qulong porphyry Cu-Mo deposit[J]. Economic Geology, 112(6): 1419-1440.
Schulz K J, DeYoung J H Jr, Bradley D C, et al., 2017. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply[R]. Reston: U.S. Department of the Interior, U.S. Geological Survey.
Sun X, Hollings P, Lu Y-J, 2021. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet[J]. Mineralium Deposita, 56(3): 457-480.
Sun X,Leng C B, Hollings P, et al., 2020. New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation[J]. Mineralium Deposita, doi: 10.1007/s00126-020-01020-5.
Sun X, Lu Y J, McCuaig T C, et al., 2018. Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in southern Tibet: implications for mantle metasomatism and porphyry copper mineralization in collisional orogens[J]. Journal of Petrology, 59(3): 341-386.
Tang J X, Yang H H, Song Y, et al., 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology,4:1-16.
Xie Y L, Li L M, Wang B G, et al., 2017. Genesis of the Zhaxikang epithermal Pb-Zn-Sb deposit in southern Tibet, China: Evidence for a magmatic link[J]. Ore Geology Reviews, 80: 891-909.
Yang Z M, Goldfarb R, Chang Z S, 2016. Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate[M]//Richards, Jeremy P. Tectonics and Metallogeny of the Tethyan Orogenic Belt. Littleton: Society of Economic Geologists. 279-300.
Yang Z M,Hou Z Q, White N C, et al., 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. Ore Geology Reviews, 36(1-3): 133-159.
Yang Z M, Lu Y J, Hou Z Q, et al., 2015. High-Mg diorite from Qulong in southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J]. Journal of Petrology, 56(2): 227-254.
Zeng L S, Gao L E, Tang S H, et al., 2015. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications, 412(1): 287-316.
Zhang Z, Li G-M, Zhang L-K, et al., 2020. Genesis of the Mingsai Au deposit, southern Tibet: Constraints from geology, fluid inclusions,40Ar/39Ar geochronology, H-O isotopes, and in situ sulfur isotope compositions of pyrite[J]. Ore Geology Reviews, 122: 103488.
Zhao J X, Qin K Z, Xiao B, et al., 2016. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: constraints on magmatic-hydrothermal evolution and exhumation[J]. Gondwana Research, 36: 390-409.
Zheng S-J, Zhong H, Bai Z-J, et al., 2021. High-sulfidation veins in the Jiama porphyry system, South Tibet[J]. Mineralium Deposita, 56(2): 205-214.
Zheng W B, Tang J X, Zhong K H, et al., 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China[J]. Ore Geology Reviews, 74: 151-169.
付建刚,李光明,董随亮,等,2020. 西藏北喜马拉雅拉隆穹隆含Be、Nb、Ta钠长石花岗岩的识别及意义[J].沉积与特提斯地质,40(02):91-103.
高利娥, 曾令森, 胡古月, 等, 2019. 藏南拿日雍措片麻岩穹窿淡色花岗岩稀有金属的富集[J]. 地球科学, 44(6): 1860-1875.
郭娟, 崔荣国, 闫卫东, 等, 2020. 2019年中国矿产资源形势回顾与展望[J]. 中国矿业, 29(1): 1-5.
侯增谦, 杨竹森, 徐文艺, 等, 2006a. 青藏高原碰撞造山带: I. 主碰撞造山成矿作用[J]. 矿床地质, 25(4): 337-358.
侯增谦, 曲晓明, 杨竹森, 等, 2006b. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629-651.
侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 83(12): 1779-1817.
侯增谦, 2010. 大陆碰撞成矿论[J]. 地质学报, 84(1): 30-58.
黄春梅, 李光明, 张志, 等, 2018. 藏南错那洞淡色花岗岩成因: 来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 25(6): 182-195.
黄勇, 唐菊兴, 郎兴海, 等, 2011. 雄村铜金矿床Ⅱ号矿体侵入岩-火山岩的地球化学特征: 对岩石成因及构造背景的约束[J]. 矿床地质, 30(2): 361-373.
黄勇, 付建刚, 李光明, 等, 2019. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现[J]. 地球科学, 44(7): 2197-2206.
李光明, 刘波, 屈文俊, 等, 2005a. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统: ——来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J]. 大地构造与成矿学, 29(4): 482-490.
李光明, 曾庆贵, 雍永源, 等, 2005b. 西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义——以西藏弄如日金锑矿床为例[J]. 矿床地质, 24(6): 595-602.
李光明, 佘宏全, 张丽, 等, 2009. 西藏冈底斯铜多金属成矿带基于MRAS资源评价系统的成矿预测[J]. 地质与勘探, 45(6): 645-654.
李光明, 段志明, 黄勇, 等, 2017a. 西藏冈底斯-喜马拉雅地质与成矿[M]. 武汉: 中国地质大学出版社. 0-256.
李光明, 张林奎, 焦彦杰, 等, 2017b. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 36(4): 1003-1008.
李光明, 张林奎, 吴建阳, 等, 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(1): 1-14.
李建康, 邹天人, 王登红, 等, 2017. 中国铍矿成矿规律[J]. 矿床地质, 36(4): 951-978.
李应栩, 黄永高, 韩飞, 等, 2018. 西藏中冈底斯成矿带中段铍矿化体的发现与意义[J]. 沉积与特提斯地质, 38(4): 62-67.
李应栩, 李光明, 黄永高, 等, 2019. 西藏中冈底斯成矿带晚三叠世铍铷稀有金属矿化: 独居石U-Pb年代学证据[J]. 地球科学, 44(7): 2379-2393.
梁维, 张林奎, 夏祥标, 等, 2018. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J]. 地球科学, 43(8): 2742-2754.
林彬, 唐菊兴, 唐攀, 等, 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例[J]. 矿床地质, 38(6): 1204-1222.
林博磊, 尹丽文, 崔荣国, 等, 2018. 全球铍资源分布及供需格局[J]. 国土资源情报(1): 13-17.
刘洪, 张林奎, 黄瀚霄, 等, 2019. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J]. 地球科学, 44(6): 1935-1956.
毛景文, 杨宗喜, 谢桂青, 等, 2019a. 关键矿产——国际动向与思考[J]. 矿床地质, 38(4): 689-698.
毛景文, 袁顺达, 李通国, 等, 2019b. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 38(5): 935-969.
潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533.
唐菊兴, 多吉, 刘鸿飞, 等, 2012. 冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究[J]. 地球学报, 33(4): 393-410.
唐菊兴, 郑文宝, 陈毓川, 等, 2013. 西藏甲玛铜多金属矿床深部斑岩矿体找矿突破及其意义[J]. 吉林大学学报(地球科学版), 43(4): 1100-1110.
王安建, 王高尚, 邓祥征, 等, 2019. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 33(2): 133-140.
王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 93(6): 1189-1209.
王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 47(7): 871-880.
王艺云, 郑文宝, 陈毓川, 等, 2017. 西藏甲玛斑岩成矿系统铜钼元素分离机制探讨[J]. 岩石学报, 33(2): 495-514.
吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1-36.
夏祥标, 李光明, 张志, 等, 2019. 北喜马拉雅错那洞穹隆铍铷稀有金属矿床地质特征及找矿方向[J]. 矿床地质, 38(3): 586-598.
杨志明, 侯增谦, 夏代详, 等, 2008a. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示[J]. 矿床地质, 27(1): 28-36.
杨志明, 侯增谦, 宋玉财, 等, 2008b. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿[J]. 矿床地质, 27(3): 279-318.
翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 33(2): 106-111.
张泽明, 丁慧霞, 董昕, 等, 2019. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 35(2): 275-294.
张志, 张林奎, 李光明, 等, 2017. 北喜马拉雅错那洞穹隆: 片麻岩穹隆新成员与穹隆控矿新命题[J]. 地球学报, 38(5): 754-766.
郑文宝, 唐菊兴, 汪雄武, 等, 2012. 西藏甲玛铜多金属矿床金矿地质特征及成矿作用[J]. 吉林大学学报(地球科学版), 42(S1): 181-196.
朱弟成, 王青, 赵志丹, 等, 2018. 大陆边缘弧岩浆成因与大陆地壳形成[J]. 地学前缘, 25(6): 67-77.
-
计量
- 文章访问数: 2059
- PDF下载数: 167
- 施引文献: 0