Geochemistry and sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou: An approach
-
摘要: 通过岩性组合特征和岩石地球化学分析,认为贵州印江县铁厂村老堡组硅质岩的沉积环境为台地边缘斜坡至台盆。硅质主要来源于陆源碎屑,不具热水沉积的特征。岩石地球化学特征研究表明,V/(V+Ni)值指示老堡组硅质岩形成于静海环境,受陆源的影响较大。δCe值和(La/Ce)N值表明老堡组硅质岩的沉积环境为开阔盆地和大陆边缘之间,构造背景为大陆边缘。Abstract: The sedimentary environments of the siliceous rocks from the Sinian-Lower Cambrian Laobao Formation in Tiechang, Yinjiang, Guizhou are classified, according to lithological associations and geochemical signatures, into the platform-margin to the platform basin sedimentary environments. The siliceous deposits are primarily derived from the terrigenous clastic deposits rather than the hydrothermal deposits. Geochemically, the V/(V + Ni) ratios suggest the euxinic environment for the formation of the siliceous rocks from the Laobao Formation. The Al/(Al + Fe + Mn) ratios and Al-Fe-Mn triangular diagram indicate that the terrigenous clastics have play an important part in the formation of the siliceous rocks. The Al2O3/(Al2O3 + Fe2O3) ratios and Al2O3/(Al2O3 + Fe2O3) versus Fe2O3/TiO2 diagrams indicate the continental marginal environment for the tectonic setting of the siliceous rocks from the Laobao Formation. The δCe values and (La/Ce)N values also show that the siliceous rocks from the Laobao Formation were formed in the sedimentary environments intermediate between the open basin and continental marginal environments.
-
Key words:
- siliceous rock /
- geochemistry /
- sedimentary environment /
- origin
-
-
[1] 伊海生,彭军,夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报,1995,13(4):13-137.
[2] 唐世荣,王东安,李任伟. 湘川地区震旦-寒武系硅岩的有机岩石学研究[J]. 沉积学报,1997,15(1):54-59.
[3] 陈孝红,汪啸风,毛晓冬. 湘西地区晚震旦世黑色岩系地层层序、沉积环境与成因[J]. 地球学报,1999,20(1):87-95.
[4] 彭军,伊海生,夏文杰. 湘黔桂地区晚前寒武纪层状硅质岩地球化学特征及成因[J]. 地质地球化学,1999,27(4):33-39.
[5] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19:29-37
[6] 赵国连. 生物作用在二氧化硅聚集沉淀过程中的意义-以皖南浙西的硅质岩为例[J]. 沉积学报,1999,17(1):30-37.
[7] 彭军,徐望国. 湘西上震旦统层状硅质岩沉积环境的地球化学标志[J]. 地球化学,2001,30:293-298.
[8] 胡杰. 桂东北较深水相前寒武纪之交的硅质微生物岩[J]. 微体古生物学报,2008,25(3):291-305.
[9] 常华进,储雪蕾,冯连君,等. 湖南安化留茶坡硅质岩的REE地球化学特征及其意义[J]. 中国地质,2008,35:879-887.
[10] 常华进,储雪蕾,冯连君,等. 华南老堡组硅质岩中草莓状黄铁矿-埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009,25:1001-1007.
[11] 杨兴莲,朱茂炎,赵元龙,等. 黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征[J]. 地质论评,2008,54(1):3-15.
[12] 张位华,姜立君,高慧,杨瑞东. 贵州寒武系底部黑色硅质岩成因及沉积环境探讨[J]. 矿物岩石地球化学通报,2003,22(2):174-178.
[13] 常华进,储雪蕾,冯连君,等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报,2010,28(6):1098-1107.
[14] 贵州省地质调查院. 贵州省区域地质志[M]. 北京:地质出版社,2013.
[15] 周正茂, 李核良, 赵志强, 等. 贵州1:5万谯家铺幅(H49E023002)、甘龙口幅(H49E023003)、合水幅(H49E024003) 3幅区域地质调查报告[R]. 重庆:重庆市地质矿产勘查开发局607地质队,2018.
[16] Yamamoto K. Geochemical characteristics and depositional environments of cherts and ssociated rocks in the Franciscan and Shimanto terranes[J]. Sedimentary Geology,1987,52:65~108.
[17] 朱炳光. 硅质岩成因研究进展[J]. 中国西部科技,2011,10(26):10-11,36.
[18] Murray R W. Chemical criteria to identify the depositional environment ofchert:General principles and applications[J]. Sedimentary Geology,1994,90(3/4):213-232.
[19] Girt G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada,California[J]. Journal of Sedimentary Research,1996, 66(1):107-118.
[20] 张聪,黄虎,侯明才. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题[J]. 成都理工大学学报(自然科学版),2017,44(3):293-304.
[21] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129.
[22] 赵志强,凌云,李核良,等. 重庆秀山小茶园大塘坡组含锰岩系地球化学特征分析及意义[J]. 矿物岩石地球化学通报, 2019,38(2):330-341.
[23] 谢桂青,胡瑞忠,方维萱,漆亮. 云南墨江金矿床硅质岩沉积环境的地球化学探讨[J]. 地球化学, 2001, 30(5):491-496.
[24] Crowley T J, Berner R A. Palaeoclimate:CO2 and climate change[J]. Science,2001,292(5518):870-872.
[25] 毛晓东,汪啸风,陈孝红. 扬子地台东南缘震旦纪-早寒武世沉积环境及有关矿产[J]. 华南地质与矿产,1998,2:24-31.
-
计量
- 文章访问数: 601
- PDF下载数: 82
- 施引文献: 0