基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价

薛 强, 张茂省, 李 林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 2015, 34(11): 2108-2115.
引用本文: 薛 强, 张茂省, 李 林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J]. 地质通报, 2015, 34(11): 2108-2115.
XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 2015, 34(11): 2108-2115.
Citation: XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an[J]. Geological Bulletin of China, 2015, 34(11): 2108-2115.

基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价

Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’an

  • 滑坡易发性评价对滑坡灾害的防治与管理具有重要意义。为了评价延安宝塔区黄土滑坡易发性,以斜坡为基本评价单元,选取斜坡坡度、坡高、坡向、坡形、斜坡结构类型、植被和人类工程活动7个指标作为评价因子,在ArcGIS平台下,利用信息量模型对研究区的黄土滑坡进行易发性分区评价。评价结果表明,宝塔区滑坡高易发区面积1092.39km2,占全区面积的30.81%,主要分布于宝塔区的中部及北部地区,低易发区集中于宝塔区南部汾川河流域。以斜坡作为评价单元提高了与实际地形地貌的吻合度。应用信息量模型进行滑坡易发性评价具有较高的预测精度,已有滑坡点落在很高易发区和高易发区中的比例为95.7%,较真实地反映了客观实际。
  • 加载中
  • 加载中
计量
  • 文章访问数:  911
  • PDF下载数:  447
  • 施引文献:  0
出版历程
刊出日期:  2015-11-15

目录