西藏拉萨地体西北部革吉地区两期早白垩世岩浆作用——锆石U-Pb年龄、Hf同位素和地球化学特征
Two episodes of Early Cretaceous magmatism in Geji area of the Lhasa Block, Tibet
-
摘要: 邦巴岩体位于拉萨地块西部革吉地区,由主体花岗岩、花岗闪长岩、闪长质包体及一系列近平行、南北向展布的花岗斑岩脉体组成。野外地质调查和LA-MC-ICP-MS锆石U-Pb定年表明,革吉地区白垩纪的两期岩浆活动分别发生在131~132Ma和127Ma。早期岩浆作用形成主体花岗岩、花岗闪长岩及闪长质包体,具有以下特征:①明显富集K、Cs等大离子亲石元素,亏损Nb、Ti、Zr等高场强元素;②具有明显的负Eu异常(Eu/Eu*=0.49~0.61)及负Ce异常;③具负εHf(t)值(-3.2~-0.3)及古老的地壳模式年龄(1.210~1.399Ga);④初始Sr同位素比值为0.70424~0.71472,εHf(t)值为-5.70~-5.54。晚期岩浆作用形成花岗斑岩脉体,具有以下特征:①富集K、Cs等大离子亲石元素,强烈亏损Nb、Ta、Ti等高场强元素;②基本不具有负Eu异常或具有轻微的负Eu异常(Eu/Eu*=0.74~0.87);③具有更老的Hf同位素地壳模式年龄(1.226~1.576Ga)及更负的大范围变化的εHf(t)值(-6.1~-0.7)。晚期岩浆作用锆饱和温度(777~796℃)及轻稀土元素不饱和温度(794~812℃)均高于早期岩浆的锆饱和温度(661~762℃)及轻稀土元素不饱和温度(750~769℃)。上述特征表明,两期岩浆作用均为中拉萨地块古老基底部分与地幔物质混染部分熔融的产物,随着岩浆作用的持续进行,岩浆中的古老地壳组分增加,熔体温度也增加,可能与南向俯冲的班公-怒江洋壳回转驱动的地幔岩浆活动向北迁移有关。
-
关键词:
- 革吉地区 /
- 邦巴岩体 /
- 两期岩浆作用 /
- 锆饱和温度 /
- 轻稀土元素不饱和温度 /
- LA-MC-ICP-MS锆石U-Pb年龄
Abstract: A series of sub-parallel, NS-trending dikes of rhyolitic composition intruded the Bangba granitic complex in Geji area, western central Lhasa Block. Field investigation and LA-MC-ICP-MS zircon U-Pb dating indicate that two episodes of Early Cretaceous magamatism occurred at 131~132Ma and 127Ma respectively in this area. Earlier episode magmatism is represented by the formation of the dioritic enclaves and their hosts of granodiorite and granite. The magmatic rocks of this episode are characterized by ① enrichment of LILEs(K, Cs) and depletion of HFSEs(Nb, Ti, Zr); ② negative Eu anomalies(Eu/Eu*=0.49~0.61) and negative Ce anomalies; ③ negative zircon εHf(t)(-3.2~-0.3) and ancient two stage model ages(1.210~1.399Ga); and(4) unradioenic to radiogenic initial 87Sr/86Sr(0.70424~0.71472), and negative Nd(t)(-5.70~-5.54). The rhyolitic dikes, generated by the second episode of magmatism, are characterized by ① enrichment of LILEs(K, Cs) and depletion of HFSEs(Nb, Ti, Zr); ② weak negative Eu anomalies(Eu/Eu*=0.74~0.87); and ③ highly variable negative zircon εHf(t)(-6.1~-0.7) and more ancient two stage model ages(1.226~1.576Ga). Both the zircon saturation thermometer(777~796℃) and monazite saturation thermometer(794~812℃) yielded slightly higher magma temperature for the rhyolitic dike than the temperatures(661~762℃ and 750~769℃) either for granodiotite or for the mafic enclave. Both episodes of magmatism are considered to have been the consequence of mixing of mantle-derived magma with the mag-ma derived from melting of ancient continental crust, which might have resulted from roll-back of southward subduction of the Ban-gong-Nujiang oceanic lithosphere. -
-
[1] Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened. lower crust beneath southern Tibet[J]. Geology, 2003, 31(11):1021-1024.
[2] Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene East-west extension in southern Ti-bet[J]. Earth and Planetary Science Letters, 2004, 220:139-155.
[3] Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision:evidence from Cenozoic ig-neous rocks in southern Tibet[J]. Lithos, 2007, 96:225-242.
[4] Zhu D C, Mo, X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse through-out the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312.
[5] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2):241-255.
[6] Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic An-dean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328:290-308.
[7] Zhang L Y, Ding L, Yang D, et al. Origin of middle Miocene leuco-granites and rhyolites on the Tibetan Plateau:Constraints on the tim-ing of crustal thickening and uplift of its northern boundary[J]. Chinese Science Bulletin, 2012, 57:511-524.
[8] Yin A, Harrison T M. Geologic evolution of the Himalayan Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
[9] 潘桂棠,丁俊,王立全,等. 1:1500000青藏高原及邻区地质图及说明书[M].成都:成都地图出版社,2004.
[10] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533.
[11] Dewey J F, Shackelton R M, Chang C F, et al. The Tectonic Evolution of the Tibetan Plateau[J]. Royal Society of London Philo-sophical Transactions, 1988, 327:379-413.
[12] Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Ti-bet, between the Tarimand the Indus[J]. Earth and Planetary Science Letters, 1996, 142:311-330.
[13] Zhang K J, Xia B D, Wang G M, et al. Early Cretaceous stratigra-phy,depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116:1202-1222.
[14] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007. 119:917-932.
[15] Metcalfe I. Tectonic framework and Phanerozoic evolution of Sun-daland[J]. Gondwana Research, 2011, 19(1):3-21.
[16] Rowley D B. Age of initiation of collision between India and Asia:a review of stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145:1-13.
[17] Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth:a case study of the Pa-leogene Linzizong Volcanic Succession in southern Tibet[J]. Chem-ical Geology, 2008, 250:49-67.
[18] Niu Y, O'Hara M J, Pearce J A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere:a petrologic perspective[J]. Journal of Petrology, 2003, 44:851-866.
[19] Ding L, Kapp P, Zhong D L, et al. Cenozoic Volcanism in Tibet:Ev-idence for a Transition from Oceanic to Continental Subduction[J]. Journal of Petrology, 2003, 44(10):1833-1865.
[20] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shorten-ing, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117:865-878.
[21] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34:745-748.
[22] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan plateau:changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119:654-680.
[23] Leier A L, Decelles P G, Kapp P, et al. Lower Cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77:809-825.
[24] Leier A L, Kapp P, Gehrels G E, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa Terrane, Southern Tibet[J]. Basin Research, 2007, 19:361-378.
[25] 朱弟成, 潘桂棠, 莫宣学,等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J]. 岩石学报, 2006, 22(3):534-546.
[26] 朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报, 2008, 27(9):1535-1550.
[27] 朱弟成,潘桂棠,王立全,等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报, 2008, 27(4):458-468.
[28] 姜昕,赵志丹,朱弟成,等.西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学[J].岩石学报, 2010, 26(7):215-2164.
[29] 常青松,朱弟成, 赵志丹,等.西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J].岩石学报, 2011, 27(7):2034-2044.
[30] 张立雪,王青,朱弟成,等.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报, 2013, 29(11):3681-3688.
[31] Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in the Lhasa block(Tibet):a geochronological study[J]. Journal of Geology, 1985, 93:41-57.
[32] Pearce J A, Mei H J. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[C]//Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1988, 327:169-201.
[33] Harris N B, Inger S, Xu R. Cretaceous plutonism in Central Tibet:an example of post-collisionmagmatism?[J]. Journal of Volcanology and Geothermal Research, 1990, 44:21-32.
[34] 郭铁鹰,梁定益,张宜智,等.西藏阿里地质[M].武汉:中国地质大学出版社, 1991:1-464.
[35] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refine-ment of zircon U-Pb isotope and trace element analyses by LAICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.
[36] Ludwing K R. Isoplot/Ex Version 3.00:a Geochronological Tool-kit for Microsoft Excel[M]. Berkeley Geochronology Center, Berkeley, CA, USA. 2003.
[37] 侯可军, 李延河, 邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604.
[38] Morel M A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255:231-235.
[39] Sláma J, Kosler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35.
[40] 吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238.
[41] Miller C F, McDowell S M, Mapes R W. Hot and cold Granites? Implication of zircon saturation temperatures and preservation of in-heritance[J]. Geology, 2003, 31(6):529-532.
[42] Waston E B, Harrison T M. Ziecon saturation revisited:Tempera-ture and composition effects in a variety of crustal magmatypes[J]. Earth and Planetary Science Letters, 1983, 64:295-304.
[43] Waston E B, Harrison T M. Accessory minerals and the geochemi-cal evolution of crustal magmatic system:A summary and prospec-tus of experimental approaches[J]. Physics of the Earth and Plane-tary Interiors, 1984, 35:19-30.
[44] King P L, White A J, Chappell B W, et al. Characterization and ori-gin of aluminous A-type granites from the Lachlan fold belt South-eastern Australia[J]. Journal of Petrology, 1997, 38:371-391.
[45] 秦江锋,赖绍聪,李永飞,等.扬子板块北缘阳坝岩体锆石饱和温度的计算及其意义[J].西北地质, 2005, 38(3):1-5.
[46] 赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘, 2010, 17(1):267-286.
[47] Montel J M. Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-NaO melts at 800℃, 2kbar, under H2O-saturated conditins[J]. Geology, 1986, 14:659-662.
[48] Rapp R P, Waston E B. Monazite solubility and dissolution kinet-ics:implications for the thorium and light rare earth chemistry of felsic magmas[J]. Contributions to Mineralogy and Petrology, 1986, 94:304-316.
[49] Montel J M. A model for mouazite/melt eqiulibrium and the appli-cation to the generation of granitic magmas[J]. Chemical Geology, 1993, 110:127-146.
[50] Braun J J, Pagel M, Muller J P, et al. Cerium anomalies in lateritic profiles[J]. Geochimica et Cosmochimica Acta, 1990, 54:781-795.
[51] Zou H, McKeegan K D, Xu X, et al. Fe-Al-rich tridymite-herc-ynite xenoliths with positive cerium anomalies:preserved lateritic paleosols and implications for Miocene climate[J]. Chemical Geology, 2004, 207:101-116.
[52] 曾令森,Mihai D, Jason S.变泥质岩的深熔作用与具铈(Ce)负异常的熔体的成因[J]. 岩石矿物学杂志, 2005, 24(5):425-430.
[53] Ague J J, Brimhall G H. Granites of the batholiths of California:Products of local assimilation and regional-scale crustal contamina-tion[J]. Geology, 1987, 15:63-66.
[54] Pickett D A, Saleeby J B. Nd, Sr and Pb isotopic characteristics of Cretaceous intrusive rocks from deep levels of the Sierra Nevada batholith Tehachapi Mountains California[J]. Contributions to Mineralogy and Petrology, 1994, 118:198-215.
[55] 曾令森, 刘静, Jason S.大型花岗岩岩基形成和演化的深部动力学过程:滴水构造、钾质火山作用与地表地质过程[J].地质通报, 2006, 25(11):1257-1273.
[56] Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust[J]. Journal of the Geological Society, 2010, 167:229-248.
-
计量
- 文章访问数: 1031
- PDF下载数: 124
- 施引文献: 0