藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义

王晓先, 张进江, 闫淑玉, 刘江. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J]. 地质通报, 2016, 35(1): 91-103.
引用本文: 王晓先, 张进江, 闫淑玉, 刘江. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J]. 地质通报, 2016, 35(1): 91-103.
WANG Xiaoxian, ZHANG Jinjiang, YAN Shuyu, LIU Jiang. Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications[J]. Geological Bulletin of China, 2016, 35(1): 91-103.
Citation: WANG Xiaoxian, ZHANG Jinjiang, YAN Shuyu, LIU Jiang. Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications[J]. Geological Bulletin of China, 2016, 35(1): 91-103.

藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义

Age and geochemistry of the Cuona leucogranite in southern Tibet and its geological implications

  • 藏南错那淡色花岗岩位于喜马拉雅造山带的东部。对其进行LA-MC-ICP-MS锆石U-Pb定年,结果显示,结晶年龄为17.7±0.3Ma,代表中新世的地壳深熔作用。淡色花岗岩样品具有高的SiO2(74.46%~75.57%)、Al2O3(14.07%~14.64%)和K2O(4.19%~4.85%)含量,高的K2O/Na2O值(1.09~1.31)和A/CNK值(1.15~1.25),富集Rb、Th和U,亏损Ba、Nb、Sr、Zr等元素,显示高的Rb/Sr值(17.75~29.50)和强烈的负Eu异常(δEu=0.18~0.26),属于壳源成因的高钾钙碱性过铝质S型花岗岩。样品具有高的Isr值(0.78982~0.79276)和低的εNd(t)值(-19.5~-18.2),可与大喜马拉雅结晶杂岩(GHC)中的变泥质岩对比,暗示其来自变泥质岩的部分熔融。样品的Isr值较高,而Sr浓度较低,且随着Ba浓度的增加,Rb/Sr值逐渐降低,表明淡色花岗岩是无水条件下白云母部分熔融的产物,部分熔融可能与藏南拆离系(STDS)伸展拆离导致的构造减压有关。错那淡色花岗岩的形成反映了地壳伸展减薄背景下,构造减压导致的中下地壳中含水矿物脱水熔融,并沿STDS上升侵位的动力学过程。
  • 加载中
  • [1]

    吴福元, 刘志超, 刘小驰, 等.喜马拉雅淡色花岗岩[J]. 岩石学报, 2015, 31(1):1-36.

    [2]

    Searle M P, Godin L.The South Tibetan Detachment system and the Manaslu leucogranite:a structural re-interpretation and restoration of the Annapurna Manaslu Himalaya, Nepal[J]. Journal of Geology, 2003, 111(5):505-523.

    [3]

    Annen C, Scaillet B, Sparks R S J. Thermal constraints on the em-placement rate of a large intrusive complex:The Manaslu leucogranite, Nepal Himalaya[J]. Journal of Petrology, 2006, 47(1):71-95.

    [4]

    Cottle J M, Jessup M J, Newell D L, et al. Structural insights into the early stages of exhumation along an orogen-scale detachment:The South Tibetan Detachment system, Dzakaa Chu section, eastern Himalaya[J]. Journal of Structural Geology, 2007, 29(11):1781-1797.

    [5]

    Yang X Y, Zhang J J, Qi G W, et al. Structure and deformation around the Gyirong basin, north Himalaya, and onset of the south Tibetan detachment[J]. Science in China(Series D), 2009, 52(8):1046-1058.

    [6]

    Larson K P, Godin L, Davis J D, et al. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination, south central Tibet[J]. Tectonics, 2010, 29(4):1-30.

    [7]

    Leloup P H, Maheo G, Arnaud N, et al. The South Tibet detach-ment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters, 2010, 292(1/2):1-16.

    [8]

    Chambers J, Parrish R R, Argles T, et al. A short-duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan:Alternating channel flow and critical taper mechanics of the eastern Himalaya[J]. Tectonics, 2011, 30(2):TC2005. Doi:10.1029/2010TC002784.

    [9]

    Liu X B, Liu X H, Leloup P H, et al. Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications, in Nyalam area, Southern Tibet[J]. Chinese Science Bulletin, 2012, 57(26):3469-3481.

    [10]

    Mitsuishi M, Simon R W, Aoya M, et al. E-W extension at 19 Ma in the Kung Co area, S.Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 2012, 325/326:10-20.

    [11]

    Yan D P, Zhou M F, Robinson P T, et al. Constraining the midcrustal channel flow beneath the Tibetan Plateau:Data from the Nielaxiongbo gneiss dome, SE Tibet[J]. International Geology Re-view, 2012, 54(6):615-632.

    [12]

    莫宣学, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用响应[J]. 地学前缘, 2003, 10(3):135-148.

    [13]

    Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research, 2012, 21(4):939-960.

    [14]

    Wang X X, Zhang J J, Liu J, et al. Middle-Miocene transforma-tion of tectonic regime in the Himalayan orogen[J]. Chinese Science Bulletin, 2013, 58(1):108-117.

    [15]

    Edwards M A, Harrison T M. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the KhulaKangrigranite[J]. Geology, 1997, 25(6):543-546.

    [16]

    Coleman M E. U-Pb constraints on Oligocene-Miocene deforma-tion and anatexis within the Central Himalaya, Marsyandi valley, Nepal[J]. American Journal of Science, 1998, 298(7):553-571.

    [17]

    Harrison T M, Grove M, Lovera O M, et al. A model for the ori-gin of Himalayan anatexis and inverted metamorphism[J]. Journal of Geophysical Research, 1998, 103(B11):27017-27032.

    [18]

    Murphy M A, Harrison T M. Relationship between leucogranites and the Qomolangma detachment in the Rongbuk Valley, south Tibet[J]. Geology, 1999, 27(9):831-834.

    [19]

    Schneider D, Edwards M, Kidd W S F, et al. Early Miocene anatex-is identified in the western syntaxis, Pakistan Himalaya[J]. Earth and Planetary Science Letters, 1999, 167(3/4):121-129.

    [20]

    Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28(5):403-406.

    [21]

    Kellett D A, Godin L. Pre-Miocene deformation of the Himalayan superstructure, Hidden valley, central Nepal[J]. Journal of the Geo-logical Society, 2009, 166(2):261-275.

    [22]

    Sachan H K, Kohn M J, Saxena A, et al. The Malari leucogranite, Garhwal Himalaya, northern India:Chemistry, age, and tectonic implications[J]. Geological Society of American Bulletin, 2010, 122(11/12):1865-1876.

    [23]

    Daniel C, Vidal P, Fernandez A, et al. Isotopic study of the Manaslu granite(Himalaya, Nepal):Inferences of the age and source of Hi-malayan leucogranites[J]. Contributions to Mineralogy and Petrology, 1987, 96(1):78-92.

    [24]

    Harris N, Inger S. Trace element modeling of pelite-derived gran-ites[J]. Contributions to Mineralogy and Petrology, 1992, 110(1):46-56.

    [25]

    Harris N, Massey J. Decompression and anatexis of Himalayan metapelites[J]. Tectonics, 1994, 13(6):1537-1546.

    [26]

    Guillot S, Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J].Lithos, 1995, 35(3/4):221-234.

    [27]

    杨晓松, 金振民, Huenges E, 等. 高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示[J]. 科学通报, 2001, 46(3):246-250.

    [28]

    Guo Z F, Wilson M. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 2012, 22(2):360-376.

    [29]

    Harris N, Ayres M, Massey J. Geochemistry of granitic melts pro-duced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magma[J]. Journal of Geophysical Research, 1995, 100(B8):15767-15777.

    [30]

    Harrison T M, Lovera O M, Grove M. New insights into the ori-gin of two contrasting Himalayan granite belts[J]. Geology, 1997, 25(10):899-902.

    [31]

    Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Hi-malayan leucogranite[J]. Tectonophysics, 1987, 134(1/2/3):39-57.

    [32]

    Davidson C, Grujic D E, Hollister L S, et al. Metamorphic reac-tions related to decompression and synkinematic intrusion of leuco-granite,High Himalayan Crystallines, Bhutan[J]. Journal of Meta-morphic Geology, 1997, 15(5):593-612.

    [33]

    Harrison T M, Grove M, McKeegan K D, et al. Origin and epi-sodic emplacement of the Manaslu intrusive complex, central Hi-malaya[J]. Journal of Petrology, 1999, 40(1):3-19.

    [34]

    Nabelek P I, Liu M. Petrologic and thermal constraints on the ori-gin of leucogranites in collisional orogens[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 2004, 95:73-85.

    [35]

    张进江.北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649.

    [36]

    Aikman A B, Harrison T M, Ding L. Evidence for early(>44Ma) Himalayan crustal thickening, Tethyan Himalaya, southern Tibet[J]. Earth 牡?瑤栠敐?瑡敮捥?瑡潲湹椠捓?敩癥潮汣略琠楌潥湴?潥晲?琬栠攲‰匰漸甬琠栲?吴椨戱支琲愩渺??椭洲愳氮愼祢慲嬾?崳??吠斋捓瑈漬渠椠換獟???パら???金??咷??セキ自??ㄠ?二??活动时代[J]. 大地构造与成矿学, 2015, 39(2):250-259.

    [37]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recy-cling-induced melt-peridotite interaction in the Trans-North China Orogen U-Pb dating, Hf isotopes and trace elements in zir-con from mantle xezoliths[J]. Journal of Petrology, 2009, 51(1/2):537-571.

    [38]

    Ludwig K R. User's manual for Isoplot 3.00:A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Spe-cial Publication, 2003, 4:1-70.

    [39]

    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15):1554-1569.

    [40]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J]. Geological Society of London Special Publication, 1989, 42(1):313-345.

    [41]

    Steiger R H, Jäger E. Subcommission on geochronology:Convention on the use of decay constants in geochronology and cosmo-chronology[J]. Earth and Planetary Science Letters, 1977, 36(3):359-362.

    [42]

    Lugmair G W, Harti K. Lunar initial 143Nd/144Nd:Differential evo-lution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3):349-357.

    [43]

    Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramaf-ic intrusions of the northern Dabie complex, central China[J]. Chemistry Geology, 1999, 157(1/2):119-146.

    [44]

    Harrison T M, Mckeegan K D, LeFort P. Detection of inherited monazite in the Manaslu leukogranite by 208Pb/232Th ion micro-probe dating-crystallization age and tectonic implication[J]. Earth and Planetary Science Letters, 1995, 133(3/4):271-282.

    [45]

    Searle M P, Parrish R R, Hodges K V. Shisha Pangma leucogran-ite, south Tibetan Himalaya:Field relations, geochemistry, age, ori-gin, and emplacement[J]. Journal of Geology, 1997, 105(5):295-317.

    [46]

    Hodges K, Bowring S, Davidek K, et al. Evidence for rapid dis-placement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges[J]. Geology, 1998, 26(6):483-486.

    [47]

    于俊杰, 曾令森, 刘静, 等.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义[J]. 岩石学报, 2011, 27(7):1961-1972.

    [48]

    Imayama T, Takeshita T, Yi K, et al. Two-stage partial melting and contrasting cooling history within the Higher Himalayan Crys-talline Sequence in the far-eastern Nepal Himalaya[J]. Lithos, 2012, 134/135:1-22.

    [49]

    Kellett D A, Grujic D, Warren C, et al. Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system, Bhutan Himalaya[J]. Journal of Metamorphic Geology, 2010, 28(8):785-808.

    [50]

    杨晓松, 金振民.西藏亚东淡色花岗岩Rb-Sr和Sm-Nd同位素研究:关于其年龄和源岩的证据[J]. 地质评论, 2001,47(3):294-300.

    [51]

    Knesel K M, Davidson J P. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J]. Science, 2002,296(5576):2206-2208.

    [52]

    Ahmad T, Harris N, Bickle M, et al. Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya[J]. Geological Society of America Bulletin, 2000,112(3):467-477.

    [53]

    Miller C, Thoni M, Frank W, et al. The early Paleozoic magmatic event in the Northwest Himalaya, India:Source, tectonic setting and age of emplacement[J]. Geological Magazine, 2001, 138(3):237-251.

    [54]

    Richards A, Argles T, Harris N, et al. Himalayan architecture con-strained by isotopic tracers from clastic sediments[J]. Earth and Plan-etary Science Letters, 2005, 236(3/4):773-796.

    [55]

    Gao L E, Zeng L S. Fluxed melting of metapelite and the forma-tion of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimicaet Cosmochimica Acta, 2014, 130:136-155.

    [56]

    Gehrels G E, DeCelles P G, Ojha T P, et al.Geological and U-Pb geochronological evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J]. Journal of Asian Earth Sciences, 2006, 25(4/5/6):385-408.

    [57]

    张宏飞, Harris N, Parrish R, 等. 北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及构造意义[J]. 地球科学, 2005, 30(3):275-288.

    [58]

    王晓先, 张进江, 闫淑玉, 等. 北喜马拉雅恰芒巴二云母花岗岩的年龄及形成机制[J]. 地质科学, 2015, 50(3):708-727.

    [59]

    PatiñoDouce A, Harris N. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 1998, 39(4):689-710.

    [60]

    Zeng L S, Asimow P, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope sys-tematics of anatectic melts from a metasedimentary source[J]. Geo-chimicaet Cosmochimica Acta, 2005, 69(4):3671-3682.

    [61]

    Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickening lower continental crust[J]. Earth and Planetary Science Letters, 2011, 303(3/4):251-266.

    [62]

    Inger S, Harris N. Geochmical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya[J]. Journal of Petrolo-gy, 1993, 34(2):345-368.

    [63]

    Liu Z C, Wu F Y, Ji W Q, et al. Petrogenesis of the Rambaleuco-granite in the Tethyan Himalayan and constraints on the channel flow model[J]. Lithos, 208/209:118-136.

    [64]

    Lee J, Whitehouse M. Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircons age[J]. Geology, 2007, 35(1):45-48.

    [65]

    King J, Harris N, Argles T, et al. Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J]. Geological Society of America Bulletin, 2011, 123(1/2):218-239.

    [66]

    高利娥, 曾令森, 侯可军, 等. 藏南马拉山穹窿佩枯错复合淡色花岗岩体的多期深熔作用[J]. 科学通报, 2013, 58(27):2810-2822.

    [67]

    Catlos E J, Harrison T M, Manning C E, et al. Records of the evo-lution of the Himalayan orogen from in situ Th-Pb ion micro-probe dating of monazite:eastern Nepal and western Garhwal[J]. Journal of Asian Earth Science, 2002, 20(5):459-479.

    [68]

    Cottle J M, Jessup M J, Newell D L, et al. Geochronology of granu-litized eclogite from the AmaDrime Massif:implications fo

  • 加载中
计量
  • 文章访问数:  1147
  • PDF下载数:  214
  • 施引文献:  0
出版历程
收稿日期:  2015-09-06
修回日期:  2015-10-16
刊出日期:  2016-01-15

目录