内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义
Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance
-
摘要: 内蒙古太仆寺旗卧牛山花岗岩位于华北板块北缘晚古生代-早中生代岩浆岩带中段。卧牛山岩体LA-ICP-MS锆石206Pb/238U年龄加权平均值为274.7±1.2Ma(MSWD=0.82),非前人认为的侏罗纪。锆石稀土元素总量为362.67×10-6~1177.09×10-6,平均为797.91×10-6,各分析点的稀土元素球粒陨石标准化配分模式高度一致,富集重稀土元素,亏损轻稀土元素,具明显的正Ce异常及负Eu异常。基于锆石的稀土元素特征,通过构造背景及结晶环境判别图解、Ti温度计,结合区域地质背景及岩浆岩特征分析,认为卧牛山花岗岩为壳幔混源,形成于古亚洲洋向华北板块俯冲的构造-岩浆活动中,是活动大陆边缘的产物,与华北板块北缘晚古生代-早中生代岩浆岩带东、西段二叠纪岩体的源区及构造背景一致。研究成果确认了华北板块北缘晚古生代-早中生代岩浆岩带中段与其东、西两段在海西晚期具有相同的成因联系。Abstract: The Woniushan granite in Taibus Banner of Inner Mongolia is located in the middle part of the Late Paleozoic-Early Me-sozoic magmatic belt on the northern margin of the North China plate. The weighted average age of 206Pb/238U by LA-ICP-MS of zircon from Woniushan pluton is 274.7±1.2Ma (MSWD=0.82), indicating that the pluton is not the Jurassic in age as previously con-sidered. The ΣREE values of zircon are 362.67×10-6~1177.09×10-6 with an average of 797.91×10-6. The REE patterns of all zircon grains are highly consistent, characterized by enrichment of HREE, depletion of LREE, and obvious positive Ce and negative Eu anomalies. Through the analysis of REE characteristics, diagrams of tectonic setting, crystallization environment, and Ti thermometer in zircon, combined with regional geological setting and magmatic characteristics, the authors hold that the Woniushan granite, as the mixture of crust and mantle, was formed during the tectonic-magmatic activities of paleo-Asian Ocean subducting to the Northern North China plate, being the product of active continental margin, and the source and tectonic setting of the Woniushan granite were similar to those of the Permian magmatite in eastern and western parts of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of the North China plate. The results confirm that, in late Hercynian period, the genetic relationship of the mag-matite of the middle part of the Late Paleozoic-Early Mesozoic magmatic belt on the northern margin of North China plate was the same as that of the eastern and western parts.
-
-
[1] Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710.
[2] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646.
[3] Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47.
[4] 周金胜, 孟祥金, 臧文栓, 等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学, 微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11):3755-3766.
[5] Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302.
[6] Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138.
[7] Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62.
[8] Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158.
[9] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150.
[10] Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994.
[11] Mori Y, Orihashi Y, Miyamoto T,et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks,Kyushu,Japan[J].Journal of Metamorphic Geology,2011,29:673-684.
[12] Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010.
[13] Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19.
[14] 从峰,林仕量,邹光富,等.梁河花岗岩岩浆混合作用:锆石微量元素、U-Pb和Hf同位素示踪[J].中国科学(D辑),2011,41(4):468-481.
[15] 唐勇,张辉,吕正航.不同成因告示阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例[J].矿物岩石,2012,32(1):8-15.
[16] Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366.
[17] Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630.
[18] Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890.
[19] Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255.
[20] 张拴宏, 赵越, 刘建民, 等. 华北地块北缘晚古生代-早中生代岩浆活动期次, 特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6):824-842.
[21] 吴翠华. 内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010.
[22] 袁洪林,吴福元,高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
[23] Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.
[24] Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Cen-ter, Berkeley, calif, 2003.
[25] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.
[26] 袁桂邦,王惠初.内蒙古武川西北部早二叠世岩浆活动及其构造意义[J].地质调查与研究,2006,29(4):303-310.
[27] 范宏瑞, 胡芳芳, 杨奎锋, 等. 内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义[J]. 岩石学报, 2009, 25(11):2933-2938.
[28] 罗红玲, 吴泰然, 赵磊. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 2009(3):515-526.
[29] 章永梅,张华峰,刘文灿,等.内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报,2009, 25(12):3165-3181.
[30] Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467.
[31] 郝百武, 蒋杰. 内蒙古镶黄旗哈达庙金矿杂岩体年代学, 地球化学及其形成机制[J]. 岩石矿物学杂志, 2010, 29(6):750-762.
[32] 童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3):395-412.
[33] 刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010.
[34] 柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D]. 中国地质大学博士学位论文, 2010.
[35] 张建军, 王涛,张招崇,等.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据[J].地质评论,2012,58(1):53-66.
[36] 王挽琼, 徐仲元, 刘正宏, 等. 华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报, 2013, 29(9):2987-3003.
[37] 刘军, 武广, 李铁刚, 等. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学, 地球化学, Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 2014, 30(1):95-108.
[38] 曹花花, 许文良, 裴福萍, 等. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 岩石学报, 2012, 28(9):2733-2750.
[39] 王芳,陈福坤,侯振辉,等.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2009,25(11):3057-3074.
[40] Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024.
[41] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844.
[42] Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433.
[43] Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437.
[44] Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311.
[45] Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492.
[46] Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779.
[47] Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423.
[48] MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75.
[49] Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568.
[50] Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754.
[51] Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238.
[52] Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638.
[53] Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948.
[54] Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245.
[55] 孙德有, 吴福元, 张艳斌. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报:地球科学版, 2004, 34(2):174-181.
[56] Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219.
[57] Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences,2006,26(3/4):207-224
[58] Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556.
[59] Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51.
[60] 赵越, 陈斌, 张拴宏, 等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质, 2010, 37(4):900-915.
-
计量
- 文章访问数: 733
- PDF下载数: 65
- 施引文献: 0