内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义

夏艳菊, 吴堑虹, 奚小双. 内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义[J]. 地质通报, 2016, 35(6): 943-952.
引用本文: 夏艳菊, 吴堑虹, 奚小双. 内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义[J]. 地质通报, 2016, 35(6): 943-952.
XIA Yanju, WU Qianhong, XI Xiaoshuang. Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance[J]. Geological Bulletin of China, 2016, 35(6): 943-952.
Citation: XIA Yanju, WU Qianhong, XI Xiaoshuang. Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance[J]. Geological Bulletin of China, 2016, 35(6): 943-952.

内蒙古太仆寺旗卧牛山花岗岩锆石年龄、微量元素特征及其地质意义

Zircon geochronology and trace element characteristics of the Woniushan granites in Taibus Ban-ner, Inner Mongolia, and their geological significance

  • 内蒙古太仆寺旗卧牛山花岗岩位于华北板块北缘晚古生代-早中生代岩浆岩带中段。卧牛山岩体LA-ICP-MS锆石206Pb/238U年龄加权平均值为274.7±1.2Ma(MSWD=0.82),非前人认为的侏罗纪。锆石稀土元素总量为362.67×10-6~1177.09×10-6,平均为797.91×10-6,各分析点的稀土元素球粒陨石标准化配分模式高度一致,富集重稀土元素,亏损轻稀土元素,具明显的正Ce异常及负Eu异常。基于锆石的稀土元素特征,通过构造背景及结晶环境判别图解、Ti温度计,结合区域地质背景及岩浆岩特征分析,认为卧牛山花岗岩为壳幔混源,形成于古亚洲洋向华北板块俯冲的构造-岩浆活动中,是活动大陆边缘的产物,与华北板块北缘晚古生代-早中生代岩浆岩带东、西段二叠纪岩体的源区及构造背景一致。研究成果确认了华北板块北缘晚古生代-早中生代岩浆岩带中段与其东、西两段在海西晚期具有相同的成因联系。
  • 加载中
  • [1]

    Schulz B, Klemd R, Brätz H. Host rock compositional controls on zircon trace element signa-tures in metabasites from the Austroal-pine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3):697-710.

    [2]

    Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust:a method for distinguishing detrital zir-con provenance[J]. Geology, 2007, 35(7):643-646.

    [3]

    Li N, Chen Y J, Pirajno F, et al. LA-ICP-MS zircon U-Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:implications for Mesozoic tectono-magmatic evolution[J]. Lithos, 2012, 142:34-47.

    [4]

    周金胜, 孟祥金, 臧文栓, 等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学, 微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11):3755-3766.

    [5]

    Hinton R W, Upton B G J. The chemistry of zircon:variations within and between large crystals from syenite and alkali basalt xeno-liths[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3287-3302.

    [6]

    Rubatto D. Zircon trace element geochemistry:partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1):123-138.

    [7]

    Hoskin P W O, Schaltegger U. The composition of zircon and igne-ous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):27-62.

    [8]

    Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 2006, 231(1):135-158.

    [9]

    Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1):127-150.

    [10]

    Dong C Y, Liu D Y, Li J J, et al. Palaeoproterozoic Khondalite Belt in the western North China Craton:new evidence from SHRIMP dating and Hf isotope composition of zircons from meta-morphic rocks in the Bayan Ul-Helan Mountains area[J]. Chinese Science Bulletin, 2007, 52(21):2984-2994.

    [11]

    Mori Y, Orihashi Y, Miyamoto T,et al.Origin of zircon in jadeitite from the Nishisonogi metamorphic rocks,Kyushu,Japan[J].Journal of Metamorphic Geology,2011,29:673-684.

    [12]

    Munoz M, Charrier R, Fanning C M, et al. Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teni-ente ore deposit, Chilean Andes:constraints on the source and mag-matic evolution of porphyry Cu-Mo related magmas[J]. Journal of Petrology, 2012:egs010.

    [13]

    Storm S, Schmitt A K, Shane P, et al. Zircon trace element chemis-try at sub-micrometer resolution for Tarawera volcano, New Zea-land, and implications for rhyolite magma evolution[J]. Contribu-tions to Mineralogy and Petrology, 2014, 167(4):1-19.

    [14]

    从峰,林仕量,邹光富,等.梁河花岗岩岩浆混合作用:锆石微量元素、U-Pb和Hf同位素示踪[J].中国科学(D辑),2011,41(4):468-481.

    [15]

    唐勇,张辉,吕正航.不同成因告示阴极发光及微量元素特征:以新疆阿尔泰地区花岗岩和伟晶岩为例[J].矿物岩石,2012,32(1):8-15.

    [16]

    Belousova E A, Griffin W L, Pearson N J. Trace element composi-tion and cathodoluminescence properties of southern African kim-berlitic zircons[J]. Mineralogical Magazine, 1998, 62(3):355-366.

    [17]

    Hoskin P W O, Ireland T R. Rare earth element chemistry of zir-con and its use as a prove-nance indicator[J]. Geology, 2000, 28(7):627-630.

    [18]

    Siebel W, Schmitt A K, Danišík M, et al. Prolonged mantle resi-dence of zircon xenocrysts from the western Eger rift[J]. Nature Geoscience, 2009, 2(12):886-890.

    [19]

    Scharer U, Berndt J, Deutsch A. The genesis of deep-mantle xeno-crystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite):trace-element patterns[J]. European Journal of Mineralogy, 2011, 23(2):241-255.

    [20]

    张拴宏, 赵越, 刘建民, 等. 华北地块北缘晚古生代-早中生代岩浆活动期次, 特征及构造背景[J]. 岩石矿物学杂志, 2010, 29(6):824-842.

    [21]

    吴翠华. 内蒙古太仆寺旗前庙地岩体地质地球化学特征及成矿预测[D].中南大学硕士学位论文, 2010.

    [22]

    袁洪林,吴福元,高山, 等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.

    [23]

    Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace ele-ment determinations of zircon by laser ablation-inductively cou-pled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.

    [24]

    Ludwig K R. User's manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel[M]. Berkeley Geochromological Cen-ter, Berkeley, calif, 2003.

    [25]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345.

    [26]

    袁桂邦,王惠初.内蒙古武川西北部早二叠世岩浆活动及其构造意义[J].地质调查与研究,2006,29(4):303-310.

    [27]

    范宏瑞, 胡芳芳, 杨奎锋, 等. 内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义[J]. 岩石学报, 2009, 25(11):2933-2938.

    [28]

    罗红玲, 吴泰然, 赵磊. 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J]. 岩石学报, 2009(3):515-526.

    [29]

    章永梅,张华峰,刘文灿,等.内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报,2009, 25(12):3165-3181.

    [30]

    Zhang S H, Zhao Y, Kröner A, et al. Early Permian plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1441-1467.

    [31]

    郝百武, 蒋杰. 内蒙古镶黄旗哈达庙金矿杂岩体年代学, 地球化学及其形成机制[J]. 岩石矿物学杂志, 2010, 29(6):750-762.

    [32]

    童英, 洪大卫, 王涛, 等. 中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J]. 地球学报, 2010, 31(3):395-412.

    [33]

    刑济麟.内蒙古温都尔庙隆起带花岗岩的地球化学特征及地球动力学意义[D].吉林大学硕士学位论文, 2010.

    [34]

    柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义[D]. 中国地质大学博士学位论文, 2010.

    [35]

    张建军, 王涛,张招崇,等.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据[J].地质评论,2012,58(1):53-66.

    [36]

    王挽琼, 徐仲元, 刘正宏, 等. 华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报, 2013, 29(9):2987-3003.

    [37]

    刘军, 武广, 李铁刚, 等. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学, 地球化学, Sr-Nd同位素组成及其地质意义[J]. 岩石学报, 2014, 30(1):95-108.

    [38]

    曹花花, 许文良, 裴福萍, 等. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 岩石学报, 2012, 28(9):2733-2750.

    [39]

    王芳,陈福坤,侯振辉,等.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成[J].岩石学报, 2009,25(11):3057-3074.

    [40]

    Li X H, Liang X R, Sun M, et al. Geochronology and geochemis-try of single-grain zircons Simultaneous in-situ analysis of U-Pb age and trace elements by LA-ICP-MS[J]. European Journal of Mineralogy, 2000, 12(5):1015-1024.

    [41]

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723):841-844.

    [42]

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrolo-gy, 2006, 151(4):413-433.

    [43]

    Ferry J M, Watson E B. New thermodynamic models and revised cali-brations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4):429-437.

    [44]

    Reid M R, Vazquez J A, Schmitt A K. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, Califor-nia, with implications for the Ti-in-zircon geothermometer[J]. Contributions to Mineralogy and Petrology, 2011, 161(2):293-311.

    [45]

    Abbott S S, Harrison T M, Schmitt A K, et al. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zir-con Ti-U-Th-Pb depth profiles[J]. Proceedings of the National Academy of Sciences, 2012, 109(34):13486-13492.

    [46]

    Ewing T A, Hermann J, Rubatto D. The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)[J]. Contribu-tions to Mineralogy and Petrology, 2013, 165(4):757-779.

    [47]

    Liu Y C, Deng L P, Gu X F, et al. Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high-temperature meta-morphism in eclogites from the Dabie orogen, central China[J]. Gondwana Research, 2015, 27(1):410-423.

    [48]

    MacDonald J M, Goodenough K M, Wheeler J, et al. Tempera-ture-time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry[J]. Precambrian Research, 2015, 260:55-75.

    [49]

    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3):561-568.

    [50]

    Wark D A, Watson E B. Titani Q:a titanium-in-quartz geother-mometer[J]. Contributions to Mineralogy and Petrology, 2006, 152(6):743-754.

    [51]

    Wark D A, Hildreth W, Spear F S, et al. Pre-eruption recharge of the Bishop magma system[J]. Geology, 2007, 35(3):235-238.

    [52]

    Harrison T M, Watson E B, Aikman A B. Temperature spectra of zircon crystallization in pluto-nic rocks[J]. Geology, 2007, 35(7):635-638.

    [53]

    Pei F P, Xu W L, Yang D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7):942-948.

    [54]

    Meng E, Xu W L, Yang D B, et al. Permian volcanisms in east-ern and southeastern margins of the Jiamusi Massif, northeastern China:zircon U-Pb chronology, geochemistry and its tectonic implications[J]. Chinese Science Bulletin, 2008, 53(8):1231-1245.

    [55]

    孙德有, 吴福元, 张艳斌. 西拉木伦河-长春-延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报:地球科学版, 2004, 34(2):174-181.

    [56]

    Jia D C, Hu R Z, Liu Y, et al. Collision belt between the Khanka block and the North China block in the Yanbian Region, North-east China[J]. Journal of Asian Earth Sciences, 2004, 23(2):211-219.

    [57]

    Li J Y. Permina geodynamic setting of northeast China and adjia-cent regions:Closure of the Paleo-Asian ocean and subduction of the Paleo-paccific palte[J].Journal of Asian Earth Sciences,2006,26(3/4):207-224

    [58]

    Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 2007, 30(3):542-556.

    [59]

    Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China:implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485(1):42-51.

    [60]

    赵越, 陈斌, 张拴宏, 等. 华北克拉通北缘及邻区前燕山期主要地质事件[J]. 中国地质, 2010, 37(4):900-915.

  • 加载中
计量
  • 文章访问数:  733
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2015-07-01
修回日期:  2015-12-05
刊出日期:  2016-06-15

目录