苏鲁超高压变质带仰口蛇纹岩的成因——矿物化学、地球化学和年代学证据

李强, 温珍河, 侯方辉, 朱晓青, 孙军. 苏鲁超高压变质带仰口蛇纹岩的成因——矿物化学、地球化学和年代学证据[J]. 地质通报, 2016, 35(11): 1784-1796.
引用本文: 李强, 温珍河, 侯方辉, 朱晓青, 孙军. 苏鲁超高压变质带仰口蛇纹岩的成因——矿物化学、地球化学和年代学证据[J]. 地质通报, 2016, 35(11): 1784-1796.
LI Qiang, WEN Zhenhe, HOU Fanghui, ZHU Xiaoqing, SUN Jun. The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology[J]. Geological Bulletin of China, 2016, 35(11): 1784-1796.
Citation: LI Qiang, WEN Zhenhe, HOU Fanghui, ZHU Xiaoqing, SUN Jun. The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology[J]. Geological Bulletin of China, 2016, 35(11): 1784-1796.

苏鲁超高压变质带仰口蛇纹岩的成因——矿物化学、地球化学和年代学证据

The genesis of Yangkou serpentinites in the Sulu ultra-high-pressure terrane: Evidence from mineral chemistry, geochemistry and geochronology

  • 通过矿物化学、全岩主微量元素和铂族元素研究,结合锆石年代学判断苏鲁造山带仰口蛇纹岩的原岩成因和演化历史。蛇纹岩中尖晶石经历了多阶段变质;全岩主量元素具有超基性堆晶岩的性质,代表玄武质组分含量的CaO+Al2O3变化于2.0%~5.83%之间;部分不相容微量元素富集;铂族元素中Ir的含量低(0.64×10-9~1.43×10-9),Pd/Ir值高(1.05~3.42)。蛇纹岩中的锆石一部分为新形成的变质成因锆石(年龄平均为230±3Ma),与高压-超高压变质的年代吻合;另一部分可能是在三叠纪变质阶段古老锆石重结晶形成的。由此认为,仰口蛇纹岩的原岩可能为超基性堆晶岩,三叠纪时随着俯冲的扬子板块发生变质,在发生蛇纹石化作用之前经历了熔体/流体的改造。
  • 加载中
  • [1]

    Zhang R Y, Liou J G, Yang J S, et al. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China[J]. Journal of Metamorphic Geology, 2000, 18:149-166.

    [2]

    Zhang R Y, Liou J G, Ernst W G. The Dabie-Sulu continental col-lision zone:a comprehensive review[J]. Gondwana Research, 2009, 16:1-26.

    [3]

    郑建平. 不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J]. 科学通报,2009,54:1990-2007.

    [4]

    王希斌,杨经绥,李天福,等.东海地区高压超高压变质带中变质橄榄岩及其原岩和成因类型的判别——以PP1孔和PP3孔为例[J]. 地质学报,2009,83(7):946-963.

    [5]

    Xu Z Q, Yang W C, Ji S C, et al. Deep root of a continent-continent collision belt:Evidence from the Chinese Continental Scientic Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure (HPUHP) metamorphic terrane, China[J]. Tectonophysics, 2009, 475:204-219.

    [6]

    Yang J S, Li T F, Chen S Z, et al. Genesis of garnet peridotites in the Sulu UHP belt:Examples from the Chinese continental scientific drilling project-main hole, PP1 and PP3 drill holes[J]. Tectonophysics, 2009,475:359-382.

    [7]

    陈世忠, 杨经绥.苏鲁超高压变质带岗上超镁铁质岩铬尖晶石形成过程-铬成矿新机制[J].地学前缘,2009,16(5):232-244.

    [8]

    陈世忠,杨经绥,许志琴,等. 大陆科学钻探CCSD-PP3钻孔超镁铁岩岩石学和矿物学特征及其意义[J]. 岩石学报,2005, 21(2):369-380.

    [9]

    陈世忠,杨经绥,张仲明.中国大陆科学钻探CCSD-PP3钻孔地幔岩的尖晶石相部分熔融证据[J].岩石学报,2006,22(11):2815-2824.

    [10]

    李天福,杨经绥,Rumble D. 苏鲁超高压变质带的岩浆型超镁铁岩:来自中国大陆科学钻探主孔的亏损氧同位素证据[J]. 岩石学报,2006,22(7):1933-1940.

    [11]

    李天福,杨经绥,张儒媛. 亏损上地幔中的富钾熔体和碳酸盐交代作用:来自CCSD预先导孔橄榄岩的地球化学证据[J]. 地球科学(中国地质大学学报),2006,31(4):457-474.

    [12]

    任玉峰,高翔,杨经绥,等. 山东荣成马草夼橄榄岩矿物地球化学研究[J].岩石矿物学杂志, 2009,28(3):215-224.

    [13]

    任玉峰,杨经绥,张仲明,等.中国大陆科学钻探工程卫星孔CCSDPP6钻孔橄榄岩岩石学研究[J].地质学报,2007,81(7):1004-1016.

    [14]

    宋衍茹,金淑燕,叶凯.苏鲁-大别山超高压变质带迟家店和碧溪岭石榴二辉橄榄岩橄榄石组构[J].岩石学报,2007,23(5):1153-1159.

    [15]

    宋衍茹,叶凯,续海金.洋壳俯冲过程中的地慢楔上升对流:来自芝麻坊石榴子石二辉橄榄岩早期变质的证据[J].岩石学报, 2009,25(1):147-158.

    [16]

    许志琴,陈晶,王勤,等. 南苏鲁芝麻房石榴石橄榄岩中橄榄石的"C"类组构及其形成条件探讨[J].岩石学报, 2005,21(2):389-397.

    [17]

    许志琴,梁凤华,杨经绥,等.再论"大陆深俯冲和折返动力学":来自中国大陆科学群钻及苏鲁超高压变质带的制约[J].岩石学报, 2009,25(7):1561-1574.

    [18]

    杨经绥,李天福,梁凤华,等. 中国大陆科学钻探主孔(CCSD-MH)石榴石橄榄岩:一个经历了深俯冲作用的古生代超镁铁质侵入体[J].岩石学报,2007,23(12):3153-3170.

    [19]

    李敏,韩宗珠,许红,等.青岛仰口榴辉岩及其围岩的岩石地球化学特征和成因机制[J].中国海洋大学学报, 2014, 44(3):71-82.

    [20]

    Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200km[J]. Nature, 2000, 407:734-736.

    [21]

    Zhang R Y, Yang J S, Wooden J L, et al. U-Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China:implications for mantle metasomatism and subductionzone UHP metamorphism[J]. Earth and Planetary Science Letters, 2005, 237:729-743.

    [22]

    王来明,宋明春,王沛成. 胶南-威海造山带研究进展及重要地质问题讨论[J].山东地质, 2002, 18(3/4):78-83.

    [23]

    谢志鹏,王建,Keiko H. 苏鲁超高压变质带中蛇纹岩成因:矿物化学和铂族元素证据[J].吉林大学学报(地球科学版), 2012, 42(3):119-131.

    [24]

    许志琴,杨经绥,李化启,等. 中国大陆印支碰撞造山系及其造山机制[J].岩石学报, 2012,28(6):1697-1709.

    [25]

    Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China:petrogenetic and geodynamic implications[J]. Chemical Geology, 2008, 247:282-304.

    [26]

    刘福来,施建荣,刘建辉,等.北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代[J].岩石学报, 2011, 27(4):1075-1084.

    [27]

    潘明宝,张庆龙,陈火根,等. 苏鲁造山带南缘岩石-地层格架[J].地质通报, 2002, 21(12):848-854.

    [28]

    Xie Z P, Hattori k, Wang J. Origins of ultramafic rocks in the Sulu Ultrahigh-pressure Terrane, Eastern China[J]. Lithos, 2013, 178:158-170.

    [29]

    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotiteinteractions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51:537-571.

    [30]

    Ludwig K R. Isoplot/Ex version 3. 00:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.

    [31]

    Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51:507-513.

    [32]

    Potts P J, Kane J S. International association of geoanalysts certificate of analysis:certified reference material OU-6(Penrhyn slate)[J]. Geostandards and Geoanalytical Research, 2005, 29:233-236.

    [33]

    Thompson M, Potts P J, Kane J S, et al. GeoPT5. An international proficiency test for analytical geochemistry laboratories-report on round 5(August 1999)[J]. Geostandards and Geoanalytical Research, 2000, 24:1-28.

    [34]

    Qi L, Gao J F, Huang X W, et al. An improved digestion technique for determination of platinum group elements in geological samples[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9):1900-1904.

    [35]

    Meisel T, Moser J. Reference materials for geochemical PGE analysis:New analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials[J]. Chemical Geology, 2004, 208:319-338.

    [36]

    Wang J, Hattori K H, Kilian R, et al.Metasomatism of sub-arc mantle peridotites below southern South America:reduction of fO2 by slab-melt[J]. Contributions to Mineralogy and Petrology,2007, 153:607-624.

    [37]

    Roeder P L, Campbell I H. The effect of post-cumulus reactions on composition of chrome-spinels from the Jimberlana intrusion[J]. Journal of Petrology, 1985, 26(3):763-786.

    [38]

    Press S. Detrital spinels from alpinotype source rocks in Middle Devonian sediments of the Rhenish massif[J]. Geologische Rundschau, 1986, 75:333-340.

    [39]

    Cookenboo H O, Bustin R M, Wilks K R. Detrital chromium spinel compositions used to reconstruct the tectonic setting of provenance:Implications for orogeny in the Canadian Cordilera[J]. Journal of Sedimentary Research, 1997, 67:116-123.

    [40]

    Arai S. Characterization of spinel peridotites by olivine spinel compositional relationships:Review and interpretation[J]. Chemical Geology, 1994, 113:191-204.

    [41]

    Pearce J A, Barker P F, Edwards S J, et al. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic[J]. Contributions to Mineralogy and Petrology, 2000, 139:36-53.

    [42]

    Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86:54-76.

    [43]

    Barnes S J, Roeder P L. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 2001, 42:2279-2302.

    [44]

    Saumur B M, Hattori K, Guillot S. Contrasting origins of serpentinites in a subduction complex, northern Dominican Republic[J]. Bulletin of the Geological Society of America, 2010, 122(1/2):292-304.

    [45]

    Zheng J P, O'Reilly S Y, Griffin W L, et al. Relics of refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos,2001, 57:43-66.

    [46]

    Zheng J P, Griffin W L, O'Reilly S Y, et al. Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere:constraints on mantle evolution beneath Eastern China[J]. Journal of Petrology,2006, 47:2233-2256.

    [47]

    McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-254.

    [48]

    Parkinson I J, Pearce J A. Peridotites from the Izu-BoninMarianaforearc(ODP Leg 125):Evidence for mantle melting and meltmantle interaction in a supra-subduction zone setting[J]. Journal of Petrology, 1998, 39:1577-1618.

    [49]

    Coleman R G.Ophiolites[M]. Berlin, Heidelberg, New York, Evans:Spring-Verlag Press, 1977.

    [50]

    Zheng L, Zhi X C, Reisberg L. Re-Os systematics of the Raobazhaiperidotite massifs from the Dabieorogenic zone, eastern China[J]. Chemical Geology, 2009, 268:1-14.

    [51]

    Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites:Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges[J]. Journal of Petrology, 2004, 45:2423-2458.

    [52]

    Paulick H, Bach W, Godard M, et al. Geochemistry of abssalperidotites(Mid-AtlanticRidge, 15° 20'N, ODP Leg 209):Implications for fluid/rock interaction in slow spreading environments[J]. Chemical Geology, 2006, 234:179-210.

    [53]

    李源,杨经绥,刘钊,等.西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义[J].岩石学报,2011,27(11):3239-3254.

    [54]

    Xu X Z, Yang J S, Ba D Z, et al. Petrogenesis of the Kangjinlaperidotite in the Luobusaophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2011, 42(4):553-568.

    [55]

    Godard M, Lagabrielle Y, Alard O, et al. Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274(FifteenTwenty Fracture Zone, Mid-Atlantic Ridge):implications for mantle dynamics beneath a slow spreading ridge[J]. Earth Planetary Science Letter,2008, 267:410-425.

    [56]

    李晖,刘庆,侯泉林,等.内蒙古柯单山蛇绿岩地幔橄榄岩铂族元素(PGEs)的分布特征及分异机制探讨[J].岩石学报,2011,27(6):1759-1769.

    [57]

    Capobianco C J, Drake M J. Partioning of ruthenium, rhodium, palladium between spinel and silicate melt and implications for platinum group element fractionation trends[J]. Geochimca et Cosmochimica Acta, 1990, 54:869-874.

    [58]

    Liu F L, Liou J G. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks[J]. Journal of Asian Earth Sciences, 2011, 40:1-39.

    [59]

    Rowley D B, Xue F, Tucker R D. Ages of ultrahigh pressure metamorphism and protolithorthogneisses from the eastern Dabie Shan:U/Ph zircon geochronology[J]. Earth and Planet Science Letters, 1997, 151:191-203.

    [60]

    Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:Geochronology of the Ivren Zone(Southern Alps)[J]. Contrib. Mineral. Petrol., 1999, 134:380-404.

    [61]

    吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004, 49(16):1589-1604.

    [62]

    Deschamps F, Godard M, Guillot S, et al. Geochemistry of subduction zone serpentinites:A review[J]. Lithos, 2013, 178:96-127.

    [63]

    Kodolányi J, Pettke T, Spandler C, et al. Geochemistry of ocean floor and fore-arc serpentinites:constraints on the ultramafic input to subduction zones[J]. Journal of Petrology, 2012, 53:235-270.

    [64]

    Wang J, Hattori K H, Li J P, et al. Oxidation state of Paleozoic subcontinental lithospheric mantle below the PaliAike[J]. Lithos, 2008, 105:98-110.

    [65]

    Wang J, Hattori K, Xu W L, et al. Origin of ultramafic xenoliths in high-Mg diorites from east-central China based on their oxidation state and abundance of platinum group elements[J]. International Geology Review, 2012, 54:1203-1218.

  • 加载中
计量
  • 文章访问数:  1371
  • PDF下载数:  109
  • 施引文献:  0
出版历程
收稿日期:  2016-01-27
修回日期:  2016-03-03
刊出日期:  2016-11-15

目录