Spatial carrier of geothermal system in eastern Sichuan fold zone——interconnected fault system: A case study of geothermal well in Moujia Town, Guang'an, Sichuan
-
摘要: 在“双碳目标”背景下,发展低碳能源势在必行。作为重要的清洁能源,地热资源勘查及开发利用力度亟须加大。在地热资源丰富的川东褶皱带,已有研究认为,该区三叠系嘉陵江组灰岩地层是有利的热储层,也是地热勘查的主要目标体。然而,众多钻遇嘉陵江组未出地热水及未钻遇嘉陵江组出现地热水的事实,对此提出了质疑。本文在牟家镇地热勘查区,通过音频大地电磁测深发现勘查区深部存在相互连通的断裂系统,并以此为目标体进行钻孔验证,获得了日涌水量>12000m3、42℃的地热水,据此,推测相互连通的断裂系统可能是川东褶皱带地热系统的空间载体。通过探测华蓥山及铜锣山2处天然温泉及1处无水钻孔的深部构造特征,印证了川东褶皱带断裂控水的普适性;结合渗流分析,认为以相互连通的断裂系统为勘查目标体,有望实现川东褶皱带地热资源的可持续开发。本次研究将为带内普适的地热成因机制、勘查实践及可持续开发利用研究提供些许借鉴。Abstract: Under the background of "Carbon peak and Carbon neutral", it is imperative to develop low carbon energy. As an important clean energy source, the exploration and utilization of geothermal resources need to be intensified. In the eastern Sichuan fold belt, which is rich in geothermal resources, the limestone stratum of Triassic Jialingjiang Formation is considered as a favorable thermal reservoir and the main target of geothermal exploration. However, the fact that many drilling in Jialingjiang Formation did not produce geothermal water and the geothermal water from other Formation calls into question the above statement. In this paper, in the geothermal exploration area of Mujia Town, it is found that there are interconnected fault systems in the deep part of the exploration area through the audio-frequency magnetotelluric sounding. Using this as the target body for drilling verification, geothermal water with daily water inflow >12000m3 and 42°C was obtained. Based on this, it is speculated that the interconnected fault system may be the spatial carrier of the geothermal system in the eastern Sichuan fold belt. By detecting the deep structural features of two natural hot springs in Huayingshan and Tongluoshan and one waterless borehole, the universality of water control by faults in the eastern Sichuan fold belt is confirmed. Combined with the seepage analysis, it is considered that taking the interconnected fault system as the exploration target body is expected to realize the sustainable development of geothermal resources in the eastern Sichuan fold belt. This study will provide some reference for the research on the ubiquitous geothermal genetic mechanism, exploration practice and sustainable development and utilization in the belt.
-
-
Brown L D, Zhao W, Nelson K D, et al., 1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling[J]. Science, 274(5293):1688-1690.
Dong S W, Zhang Y Q,Gao R, et al., 2015. A possible buried Paleoproterozoic collisional orogen beneath central South China:Evidence from seismic-reflection profiling[J]. Precambrian Research, 264: 1-10.
Engelen G B, Jones G P, 1986. Developments in the analysis of groundwater flowsystem. Amsterdam, Wallingford:IAHS Press.
Guo J, Li W C, Li G M, et al., 2019. Tectonic-Thermal Coupling Metallogenic Models of Tethys Himalaya Pb-Zn-Sb-Au Belt in Post-collisional Stage Tectonic-Thermal Coupling Metallogenic Models of Tethys Himalaya Pb-Zn-Sb-Au Belt in Post-collisional Stage [J]. Geotectonics, 53(2): 260-270.
He W G, Zhou J X, Yuan K, 2018. Deformation evolution of Eastern Sichuan-Xuefeng fold-thrust belt in South China:Insights from analogue modelling[J]. Journal of Structural Geology, 109: 74-85.
Li J H, Dong S W,Cawood P A, et al., 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490: 170-179.
Liu S F, Steel R, Zhang G W, 2005. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: Record of continent-continentcollision[J]. Journal of Asian Earth Sciences, 25 (1): 9-27.
Wang E,Meng K, Su Z, et al., 2014. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault[J]. Tectonics, 33 (5): 686-718.
Nelson K D, Zhao W, Brown L D, et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results[J]. Science, 274(5293):1684-1688.
Pollack H N, Hunter S J, Johnson J R, 1993. Heat flow from the Earth' s interior: analysis of the global data set [J]. Reviews of Geophysics, 31:267-280.
Ta M M, Zhou X, Guo J, et al., 2019. Hydrogeochemical characteristics and formation of the hot springs occurring in the plunging ends of an anticline in Chongqing, Eastern Sichuan Basin, China[J]. Environmental Earth Sciences,78:468.
Ta M M, Zhou X, Xu Y, et al., 2020. Occurrence and flow systems of the anticline-controlled thermal groundwater near Chongqing in eastern Sichuan Basin of China[J]. Hydrology Research, 51(4): 739-749.
Wei W B, Unsworth M, Jones A, et al., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies[J]. Science, 292(5517): 716-719.
Yang P H, Dan L, Groves C, et al., 2019.Geochemistry and genesis of geothermal well water from a carbonate-evaporite aquifer in Chongqing, SW China[J]. Environmental Earth Sciences,78:33.
К.С.巴斯宁耶夫, А.М.费拉索夫, И.Н.科钦娜, 等, 1992. 地下流体力学[M].北京:石油工业出版社.
陈荣华, 1988. 重庆市统景风景区温泉成因与开发利用[J]. 重庆师范学院院报, 2(5):51-54.
付宜兴, 张萍, 李志祥, 等, 2007. 中扬子区构造特征及勘探方向建议[J]. 大地构造与成矿学, 31(3):308-314.
何治亮, 冯建赟, 张英, 等, 2017.试论中国地热单元分级分类评价体系[J]. 地学前缘, 24(3):168-179.
胡召齐, 朱光, 刘国生, 等, 2009. 川东“侏罗山式”褶皱带形成时代:不整合面的证据[J].地质论评, 55(1):32-42.
李东升, 刘东升, 2011.重庆地热水资源热储构造与径流补给[J].河海大学学报, 39(4):372-376.
李鸿举, 1987. 重庆市小泉宾馆地下热水的水文地质特征及开采利用条件[J]. 四川地质学报(1),66-72.
林耀庭, 熊淑君, 1999. 氢氧同位素在四川气田地层水中的分布特征及其成因分类[J]. 海相油气地质, 4(4):39-45.
刘重庆, 周建勋, 朗建, 2013. 多层滑脱条件下褶皱冲断带形成制约因素研究:以川东-雪峰构造带为例[J]. 地球科学与环境学报, 35 (2): 45-55.
刘春平, 王拥军, 林娟华, 等, 2006. 江汉盆地印支-喜马拉雅期构造演化与海相地层油气成藏模式及勘探方向[J]. 中国石油勘探, 11(2):24-29.
罗改, 王全伟, 陈宇龙, 等, 2021. 四川省大地构造单元划分及其基本特征[J]. 沉积与特提斯地质, 41(4):633-647.
罗祥康, 2000. 重庆市渝北区统景风景旅游区温泉的形成及其特征[J]. 中国岩溶, 19(2):159-163.
罗云菊, 刘东燕, 许模, 2006. 重庆地下热水径流特征研究[J].地球与环境, 34(1):49-54.
罗云菊, 许模, 唐光洁, 2007. 重庆南温泉背斜地下热水资源衰减过程数值模拟研究[J].成都理工大学学报(自然科学版), 34(2):201-205.
毛小平, 汪新伟, 李克文, 等, 2018.地热田热量来源及形成主控因素[J].地球科学, 43(11):4256-4266.
唐晓珊, 黄建中, 郭乐群, 1997. 再论湖南板溪群及其大地构造环境[J]. 湖南地质, 16(4):219-226.
拓明明, 周训, 郭娟, 等, 2018.重庆温泉及地下热水的分布及成因[J]. 水文地质工程地质,45(1):165-172.
谭志远, 侯学文, 魏继生, 等, 2021. 四川盆地下三叠统嘉陵江组主要成盐期岩相古地理特征[J]. 沉积与特提斯地质, 41(4):564-572.
王二七, 苏哲, 许光, 2009. 我国的一些造山带的侧向挤出构造[J]. 地质科学, 44(4):1266-1288.
汪洋, 邓晋福, 汪集旸, 等, 2001. 中国大陆热流分布特征及热-构造分区[J], 中国科学院研究生院学报, 18(1):51-58.
王宗秀, 李春麟, 李会军, 等, 2019. 川东-武陵地区构造格局及演化[J]. 地质力学学报, 25(5):827-839.
吴奇之, 王同和, 李明杰, 等, 1997. 国油气盆地构造演化与油气聚集[M]. 北京:石油工业出版社,177-178.
肖琼, 2012. 重庆三叠系碳酸盐岩热储成因与水-岩作用过程研究[D]. 重庆:西南大学博士学位论文.
徐明, 朱传庆, 单竞男, 等, 2011. 四川盆地岩石圈热结构[J]. 地球物理学报(6):225.
余琴, 杨平恒, 王长江, 等, 2017. 重庆市统景温泉水化学特征及混合作用[J]. 中国岩溶, 36(1):59-66.
袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征[J]. 地球物理学报, 49(4):1118-1126.
张乐天, 金胜, 魏文博, 等, 2012. 青藏高原东缘及四川盆地的壳幔导电性结构研究[J]. 地球物理学报,55(12):4126-4137.
张小琼, 单业华, 聂冠军, 等, 2013. 中生代川东褶皱带的数值模拟:滑脱带深度对地台盖层褶皱型式的影响[J]. 大地构造与成矿学, 37(4):622-632.
曾敏, 2013. 重庆温泉分布及类型研究[J].地下水, 35(5):4-7.
周训, 曹琴, 尹菲, 等, 2015. 四川盆地东部高褶带三叠系地层卤水和温泉的地球化学特征及成因[J]. 地质学报, 89(11):1908-1920.
-
计量
- 文章访问数: 619
- PDF下载数: 76
- 施引文献: 0