CRETACEOUS BLACK SHALE AND OCEANIC RED BEDS: PROCESS AND MECHANISM OF OCEANIC ANOXIC EVENTS AND OXIC ENVIRONMENT
-
摘要: 白垩纪是地球历史中一个重要的阶段,期间发生了以黑色页岩为特征的缺氧事件和以大洋红层为特征的富氧环境等许多重大地质事件,从白垩纪大洋缺氧到富氧转化的过程与机制,提出上述两个典型事件是同一原因形成的两个不同结果。一方面,白垩纪大规模的岩浆活动,引起大气中CO2气体浓度的升高和地球内部大量热能释放,并且改变了海陆面积的对比,最终导致大气温度的升高。海水温度的升高和CO2浓度的增加导致海洋环境中溶解O2的降低,缺氧事件随之而产生。另一方面,剧烈的岩浆活动在海底产生大量的富含铁元素的基性和超基性岩,在与海水发生反应时,岩石中的铁元素进入海水中。海水中的铁元素是海洋浮游植物宝贵的营养盐类,其含量的增加可激发浮游植物的大规模繁盛,而这一生命过程可以吸收海水中大量的CO2,并且产生等量的O2。随着海水中O2浓度的不断升高,以富含Fe3+的红色沉积物为特征的海洋富氧环境出现。然而,由岩浆活动引起的缺氧事件和同样由其造成的富氧环境,其机制存在明显的差异,前者以物理、化学过程为主,后者除此之外还演绎了更为复杂的生物-海洋地球化学过程。Abstract: The Cretaceous is an important period in which occurred many geological events, especially the OAEs (Oceanic anoxic events) characterized by black shales, and the oxic process characterized by CORBs (Cretaceous oceanic red beds). This paper describes the causative mechanism which explains how the oceanic environment changed from anoxic to oxic in Cretaceous. Two typical events show different results caused by the same reason. On the one hand, the Cretaceous large-scale magmatic activities caused CO2 to be concentrated in air,the inner energy of the Earth to release and the ocean-land area to change. Finally, they caused the increase in atmospheric temperature. This change presented the same trend as the oceanic water temperature, and caused the decrease of O2 concentration in the Cretaceous ocean, and then the OAEs occurred. On the other hand, the violent volcanoes supplied lava containing Fe for the seafloor. When the seawater reacted with the lava, the element Fe became dissolved in seawater. Iron is a micronutrient essential for the synthesis of enzymes required for photosynthesis in oceanic environment, and it could spur phytoplankton growth rapidly. The growth of phytoplankton which can consume carbon dioxide is commonly found in the world's oceans, wherever they are in atmosphere or in ocean. This process could produce equal oxygen. And then, the oxic environment characterized by red sediment rich in Fe3+ appeared. The anoxic and oxic conditions in the Cretaceous ocean were caused by magmatic activities, but they were of different causative mechanisms. The former was based on physical and chemical process, while the latter involved more complicated bio-oceanic-geochemistry process.
-
Key words:
- anoxic /
- black shale /
- oceanic red beds /
- oxic process /
- oceanic magmatic activities /
- Cretaceous
-
-
[1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events:Cause and consequence[J]. Geol., 1976, 55:179-184.
[2] Arthur M A. North Atlantic Cretaceous black shales:The record at site 398 and a brief comparison with other occurrences[C]//Initial reports of the Deep Sea Drilling Project, 1979, 47:719-753.
[3] WAN Xiao-qiao,Massimo Sarti. Cretaceous oceanic red beds and land ocean interaction[J]. Cretaceous Research, 2005, 26(1):1-2.
[4] Andrew C K, John J M. Oceanic plateaus:Problematic plumes, potential paradigms[J]. Chemical Geology,2007.
[5] Schubert C,Sandwell D. Crustal volumes of the continents of oceanic and continental submarine plateaus[J]. Earth Planet. Sci. Lett., 1989,92:234-246.
[6] Jun Korenaga. Why did not the Ontong Java Plateau form subaerially[J].Earth and Planetary Science Letters, 2005,234:385-399.
[7] Richard E E, Kenneth L B, Ian H Campbell. Frontiers in large igneous province research[J]. Lithos., 2005,79:271-297.
[8] Coffin M F, Eldholm O.Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Rev.Geophys., 1994,32:1-36.
[9] Sinton C W, Duncan R A. An oceanic flood basalt province within the Caribbean plate[J]. Earth and Planetary Science Letters, 1998,155:221-235.
[10] Kevin B, Trond H T. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle[J]. Earth and Planetary Science Letters, 2004, 227:531-538.
[11] Philip E J, Paterno R C.Geochemistry of the oldest Atlantic oceanic crust suggests Mantle plume involvement in the early history of the central Atlantic Ocean[J]. Earth and Planetary Science Letters, 2001,192:291-302.
[12] Berner R A. Atmospheric CO2 over Phanerozoic time[C]. Water-Rock Interaction. Balkema, Rotterdam, 1992:35-37.
[13] Wignall P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001,53:1-33.
[14] Donnadieu Y, Pierrehumbert R, Jacob R, et al.Modelling the primary control of paleogeography on Cretaceous climate[J]. Earth and Planetary Science Letters,2006, 248:426-437.
[15] Ulrich H, Peter A, Hochuli J O, et al. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France)[J]. Earth and Planetary Science Letters, 2004,223:303-318.
[16] Wallmann K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate[J].Geochimica et Cosmochimica Acta, 2001,65(18):3005-3025.
[17] Dana L R, Robert A B, David J B. Phanerozoic atmospheric CO2 change:evaluating geochemical and paleobiological approaches[J].Earth-Science Reviews,2001, 54(4):349-392.
[18] 洪汉净,于泳,郑秀珍,等, 全球火山分布特征[J].地学前缘,2003,10:11-16.[HONG Han-jing,YU Yong, ZHENG Xiu-zhen, et al. Global volcano distribution:pattern and variation[J]. Earth Science Frontiers, 2003
,10:11-16.]
[19] Larson R L. Geological consequences of superplumes[J]. Geology, 1991,19:963-966.
[20] Tarduno J A, Sliter W V, Kroenke L, et al. Rapid formation of Ontong Java Plateau by Aptian Mantle Plume Volcanism[J]. Science,1991,254:399-403.
[21] Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal Sciences, 2001, 301:112-149.
[22] 伍光和, 张如一, 张超.自然地理学[M]. 北京:高等教育出版社,2004:59-128.[WU Guang-he, ZHANG Ru-yi, ZHANG Chao. Physical Geography[M]. Beijing:Higher Education Press,2004:59
-128.]
[23] 周淑珍, 田连恕, 胡双熙, 等. 气象学与气候学[M]. 北京:高等教育出版社,2005:21-56.[ZHOU Shu-zhen, TIAN Lian-shu, HU Shuang-xi,et al. Meteorology and Climatology[M].Beijing:Higher Education Press,2005:21
-56.]
[24] Barron.A warm equable Cretaceoue:the nature of the problem[J]. Earth Sci. Rev., 1983,19:305-338.
[25] Bralower T J, Premoli S I, Malone M J,et al. Mid-Cretaceous Oceanic Anoxic Events[C]//ODP(Ocean Drilling Program) Initial Reports. 2002, 198:4-16.
[26] Pieter P T, Joseph A B, Ralph F K. Oceanic 13C/12C Observation:A new window on ocean CO2 uptake[J]. Global Biogeochemical Cycles, 1993,7:353-368.
[27] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic[J]. Nature, 1988,331:177-196.
[28] Martin J H. Glacical-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 1990,5:1-13.
[29] Geider R J, LaRoche J. The role of iron in phytoplankton photosynthesis and the potential for iron-limitation of primary productivity in the sea[J]. Photosynthesis Research, 1994, 39:275-301.
[30] Wells M L, Price N M, Bruland K W. Iron chemistry in seawater and its relationship to phytoplankton[J]. Marine Chemistry, 1995, 48:157-182.
[31] Hutchins D A, Wang W X, Fisher N S. Copepod grazing and the biogeochemical fate of diatom iron[J]. Limnology and Oceanography, 1995, 40:989-994.
[32] Price M L, Morel F M. Biological cycling of iron in the ocean[J]. Metal Ions in Biological System, 1998, 35:1-36.
[33] Martin J H, Gordon R M. Northeast Pacific iron distributions in relation to phytoplankton productivity[J]. Deep-Sea Res., 1988, 35:177-196.
[34] Martin J H, Gordon R M, Fitzwater S E,et al. VERTEX:Phytoplankton/iron studies in the Gulf of Alaska[J].Deep-Sea Research, 1989,36:649-680.
[35] Coale K H, Fitzwater S E, Gordon R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean[J]. Nature, 1996, 379:621-624.
[36] de Baar H, de Jong M. Distributions, sources and sinks of iron in seawater[C]//Biogeochemistry of Fe in Seawater. SCOR/IUPAC Chichester, 2001:123-253.
[37] de Baar H, de Jong M, Bakker D E, et al. Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern Ocean[J]. Nature,1995, 373:412-415.
[38] Hutchins D A, DiTullio G R, Zhang Y,et al. An iron limitation mosaic in the California upwelling regime[J]. Limnology and Oceanography,1998, 43:1037-1054.
[39] Boyd P W. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 2000, 407:695-702.
[40] Hutchins D A, Sedwick P N, DiTullio G R, et al. Phytoplankton Fe limitation in the Humboldt Current and Peru Upwelling[J]. Limnology and Oceanography,2002, 47:997-1011.
[41] Schmidt M A, Hutchins D A. Size-fractionated biological iron and carbon uptake along a coastal to offshore transect in the NE Pacific[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 1999,46:2487-2503.
[42] Murataa A, Kumamotoa Y, Saitoa C, et al.Impact of a spring phytoplankton bloom on the CO2 system in the mixed layer of the northwestern North Pacific[J]. Deep-Sea Research Ⅱ, 2002, 49:5531-5555.
[43] Shigenobu T, Atsushi T. An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS):Introduction and summary[J]. Progress in Oceanography, 2005,64:95-109.
[44] Florence N, Peter J S, Matt M. Processes influencing dissolved iron distributions below the surface at the Atlantic Ocean Celtic Sea shelf edge[J]. Marine Chemistry,2007, 104(21):156-170.
[45] Jickells T. The inputs of dust derived elements to the Sargasso Sea:a synthesis[J]. Marine Chemistry, 1999, 68:5-14.
[46] Jickells T, Spokes L J. Atmospheric iron inputs to the oceans[C]//The biogeochemistry of iron in seawater. SCOR-IUPAC Baltimore, 2001:85-121.
[47] Johnson K S,Gordon R M,Coale K H. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 1997,57:137-161.
[48] Géraldine S, Alex R B, Jurjen K, et al. Influence of atmospheric inputs on the iron distribution in the subtropical North-East Atlantic Ocean[J].Marine Chemistry,2007,104(21):186-202.
[49] Boye M, Constant M G, Jeroen T M,et al.Organic complexation of iron in the Southern Ocean[J]. Deep-Sea Res. I, 200,148:1477-1497.
[50] Boyd P W, Watson A J, Law C S, et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature,2000, 407:695-702.
[51] Wu J B, Sunda E W, Wen L S. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific[J]. Science, 2001, 293:847-849.
[52] Takata H. Spatial variability of iron in the surface ocean water of the northwestern North Pacific Ocean[J]. Marine Chemistry, 2004, 86:139-157.
[53] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371:123-129.
[54] Duce R A,Tindale N W. Atmospheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 1991,36:1715-1726.
[55] 刘玉山, 张桂兰. 250-500℃、100MPa下海水-玄武岩反应的实验研究[J].地球化学, 1996,25:53-62.[LIU Yu-shan, ZHANG Gui-lan.An experimental study on seawater-basalt interaction at 250
-500℃ and 100MPa[J]. Geochemistry, 1996,25:53-62.]
[56] Lui H C,Jeffrey C A, Damon A H. Lithium and lithium isotope through the upper oceanic crust:a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 2002, 201:187-201.
[57] Mackey D J, O'Sullivan J E, Watson R J. Iron in the western Pacific:a riverine or hydrothermal source for iron in the Equatorial Undercurrent?[J].Deep-Sea Research I, 2002, 49:877-893.
[58] Gordon R M, Coale K H, Johnson K S. Iron distributions in the equatorial Pacific:implications for new production[J]. Limnology and Oceanography, 1997, 141:419-431.
[59] Wells M L,Vallis G K, Silver E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 1999, 398:601-604.
[60] Asimow P D, Hirschmann M M, Stolper E M. Calculation of peridotite partial melting from thermodynamic models of minerals, melts:IV. Adiabatic decompression, the composition,mean properties of mid-ocean ridge basalts[J]. Petrol., 2001, 42:963-998.
[61] Blank J G, Delaney J R, Des Marsais D. The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge[J]. Geochim. Cosmochim. Acta, 1993,7:875-888.
[62] Pineau F,Javoy M. Strong degassing at ridge crests:the behavior of dissolved carbon, water in basalt glasses at Mid-Atlantic ridge[J]. Earth Planet. Sci. Lett., 1994,123:179-198.
[63] Fisk M R,Giovannoni S J,Thorseth I H. The extent of microbial life in the volcanic crust of the ocean basins[J].Science, 1998,281:978-980.
[64] Torsvik T, Furnes H, Muehlenbachs K,et al. Evidence for microbial activity at the glass-alteration interface in oceanic basalts[J]. Earth Planet. Sci. Lett., 1998, 162:165-176.
[65] Furnes H, Taudigel H. Biological mediation of basalt glass alteration in the ocean crust:how deep is the deep biosphere?[J].Earth Planet. Sci. Lett., 1999,166:97-103.
[66] Jeffrey C A, Pilar M. On the role of microbes in the alteration of submarine basaltic glass:a TEM study[J]. Earth and Planetary Science Letters, 2000, 181:301-313.
[67] Thorseth I H, Pedersen R B, Christie D M. Microbial alteration of 0~30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance[J]. Earth and Planetary Science Letters, 2003, 215:237-247.
[68] Wolfgang B, Karina J E. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production[J]. Geochimica et Cosmochimica Acta, 2003,67:3871-3887.
[69] Rolf S A, Michael G, Fred T M. The control of Phanerozoic atmosphere and seawater composition by basalt seawater exchange reactions[J]. Journal of Geochemical Exploration, 2006,88:412-415.
[70] Hu X M, Luba J, Massimo S.Mid-Cretaceous oceanic red beds in the Umbria Marche Basin,central Italy:Constraints on paleoceanography and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,233:163-186.
-
计量
- 文章访问数: 683
- PDF下载数: 7
- 施引文献: 0