地磁场强度变化对暴露年代测定的影响及校正

邵庆丰, 陈仕涛. 地磁场强度变化对暴露年代测定的影响及校正[J]. 海洋地质与第四纪地质, 2007, 27(1): 87-93.
引用本文: 邵庆丰, 陈仕涛. 地磁场强度变化对暴露年代测定的影响及校正[J]. 海洋地质与第四纪地质, 2007, 27(1): 87-93.
SHAO Qing-feng, CHEN Shi-tao. ANALYSIS OF EFFECTS OF GEOMAGNETIC INTENSITY VARIATIONS ON EXPOSURE DATING[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 87-93.
Citation: SHAO Qing-feng, CHEN Shi-tao. ANALYSIS OF EFFECTS OF GEOMAGNETIC INTENSITY VARIATIONS ON EXPOSURE DATING[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 87-93.

地磁场强度变化对暴露年代测定的影响及校正

  • 基金项目:

    国家自然科学基金项目(40073020)

详细信息
    作者简介: 邵庆丰(1982-),男,硕士,第四纪地质专业,E-mail:shaoqingfeng-nnu@163.com
  • 中图分类号: P539.3

ANALYSIS OF EFFECTS OF GEOMAGNETIC INTENSITY VARIATIONS ON EXPOSURE DATING

  • 在103~105a的尺度上,地磁场强度变化是影响陆地宇生核素生成速率的主要因素,其影响程度取决于样品的地理位置和暴露时间。根据已有的磁场古强度数据,模拟200 ka以来海拔2 km、25°N和40°N的地表10Be生成速率的变化,进而分析地表宇生核素生成速率变化对岩石暴露年代测定的影响及其模式年龄的校正。校正磁场强度变化后,海拔2 km、25°N上,50~200 ka的模式年龄可被压缩14%~19%,大于1σ的误差,相同海拔40°N上的模式年龄可减小约8%。对中低纬两组模式年龄的校正充分证明,磁场强度引起的陆地宇生核素生成速率变化是暴露年代测定中主要误差源之一,尤其在低纬高海拔地区这一影响更不容忽视。
  • 加载中
  • [1]

    Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides:theory and application[J]. Quaternary Science Reviews, 2001, 20:1475-1560.

    [2]

    Cerling T E, Craig H. Geomorphology and in-situ cosmogenic isotopes[J]. Annual Reviews of Earth and Planetary Science, 1994, 22:273-317.

    [3]

    Tuniz C. Accelerator mass spectrometry:ultra-sensitivity analysis for global science[J]. Radiation Physics and Chemistry, 2001, 61:317-322.

    [4]

    Fifield L K. Advances in accelerator mass spectrometry[J]. Nuclear Instruments and Methods in Physics Research B, 2000, 172:134-143.

    [5]

    Michael R K, Robert P A, Brad S S, et al. Cosmogenic nuclide chronology of millennial-scale glacial advances during O-isotope stage 2 in Patagonia[J]. Geological Society of America Bulletin, 2004, 116:308-321.

    [6]

    Balco G,Stone J O H. Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah[J]. Earth Surface Processes and Landforms, 2005, 30:1051-1067.

    [7]

    Hetzel R, Tao M, Stokes S, Niedermann S, et al. Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau[J]. Tectonics, 2006, 23:1-17.

    [8]

    Balco G, Stone J O H,Joseph A M. Numerical ages for Plio-Pleistocene glacial sediment sequences by 26Al/10Be dating of quartz in buried paleosols[J]. Earth and Planetary Science Letters, 2005, 232:179-191.

    [9]

    Heisinger B,Nolte E. Cosmogenic in situ production of radionuclides:Exposure ages and erosion rates[J]. Nuclear Instruments and Methods in Physics Research B, 2000, 172:790-795.

    [10]

    Lal D. Cosmic ray labeling of erosion surfaces:in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104:424-439.

    [11]

    Pigati J S,Lifton N. A. Geomagnetic effects on time-integrated cosmogenic nuclide production with emphasis on in situ 14C and 10Be[J]. Earth and Planetary Science Letters, 2004, 26:193-205.

    [12]

    McElhinny M W,Senanayake W E. Variations in the geomagnetic Dipole 1:the past 50000 years[J]. Journal of Geomagnetism and Geoelectricity, 1982, 34:39-51.

    [13]

    Guyodo Y,Valet J-P. Relative variations in geomagnetic intensity from sedimentary records:the past 200000 years[J]. Earth and Planetary Science Letters, 1996, 143:23-36.

    [14]

    Guyodo Y,Valet J-P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999, 399:249-252.

    [15]

    Clark D, Bierman P R,Larsen P. Improving in situ cosmogenic chronometers[J]. Quaternary Research, 1995, 44:366-376.

    [16]

    Dunai T J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides[J]. Earth and Planetary Science Letters, 2001, 193:197-212.

    [17]

    Owen L A, Finkel R C, Barnard P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating[J]. Quaternary Science Reviews, 2005, 24:1391-1411.

    [18]

    Chevalier M-L, Ryerson F J, Tapponnier P, et al. Slip-rate measurements on the Karacorum Fault may imply secular variations in fault motion[J]. Science, 2005, 307:411-414.

    [19]

    Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in central Asia[J]. Nature, 2002, 417:428-432.

    [20]

    Woerd J V D, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun fault(Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 2002,148:356-388.

    [21]

    Shanahan T M,Zreda M. Chronology of Quaternary glaciations in East Africa[J]. Earth and Planetary Science Letters, 2000, 177:23-42.

    [22]

    Owen L A, Finkel R C, Caffee M W, et al. Timing of multiple late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan:Defined by cosmogenic radionuclide dating of moraines[J]. Geological Society of America Bulletin, 2002, 114:593-604.

    [23]

    马配学, 郭之虞, 李坤, 等. 10Be和26Al就地产率与在地表岩石中浓度积累的定量模型[J]. 地球物理学进展, 1998, 13(1):101-114.

    [MA Pei-xue,GUO Zhi-yu,LI Kun,et al.Production rates and accumulation models of in-situ produced 10Be and 26Al in surface rocks[J]. The Advance of Geophysics, 1998, 13(1):101-114.]

    [24]

    Masarik J, Frank M, Schafer J M, et al. Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65:2995-3003.

    [25]

    Dunai T J. Scaling factors for production rates of in situ cosmogenic nuclides:a critical reeveluation[J]. Earth and Planetary Science Letters, 2000, 176:157-169.

    [26]

    Stone J O. Air pressure and cosmogenic isotope production[J]. Journal of Geophysical Research. 2000, 105:23753-23759.

    [27]

    Desilets D, Zredam M. Spatial and temporal distribution of secondary cosmic-ray nucleons intensity and applications to in situ cosmogenic dating[J]. Earth and Planetary Science Letters, 2003, 206:21-42.

    [28]

    Nishiizumi K, Winterer E L, Kohl C P, et al. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks[J]. Journal of Geophysical Research, 1989, 94 B12:17907-17915.

    [29]

    Bierman P, Larsen P, Clapp E, et al. Refining estimates of 10Be and 26Al production rates[J]. Radiocarbon, 1996, 38:149.

    [30]

    Kubik P W, Ivy-Ochs S, Masarik J, et al. 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of K fels, tz Valley, Austria[J]. Earth and Planetary Science Letters, 1998, 161:231-241.

    [31]

    Masarik J,Reedy R C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations[J]. Earth and Planetary Science Letters, 1995, 136:381-395.

    [32]

    Valet J-P. Time variations in geomagnetic intensity[J]. Reviews of Geophysics, 2003, 41(1):1-41.

    [33]

    Ivy-Ochs S, Schl Chter C, Kubik P W, et al. Minimum 10Be exposure ages of early Pliocene for the Table Mountain plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica[J]. Geology, 1995, 23:1007-1010.

    [34]

    Brook E J, Brown E T, Kurz M D, et al. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic mountains determined from in situ cosmogenic 10Be and 26Al[J]. Geology, 1995, 23:1063-1066.

    [35]

    Brown E T, Edmond J M, Raisbeck G M, et al. Examination of surface ages of Antarctic moraines using in situ produced 10Be and 26Al[J]. Geochimica et Cosmochimica Acta, 1991, 55:2269-2283.

    [36]

    Stone J O, Ballantyne C K,Fifield L K. Exposure dating and validation of periglacial weathering limits, northwest Scotland[J]. Geology, 1998, 26:587-590.

    [37]

    Bierman P R, Marsella K A, Patterson C, et al. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island:a multiple nuclide approach[J]. Geomorphology, 1999, 27:25-39.

    [38]

    黄费新, 刘小汉, 孔屏, 等. 东南极拉斯曼丘陵友谊峰基岩10Be暴露年龄及其地质意义[J]. 自然科学进展, 2005, 3:298-303.[HUANG Fei-xin, LIU Xiao-han,KONG Ping, et al. The 10

    Be exposure dating of Friendship Mountain of Larseman Hills in the Southeast Antarctica[J]. The Advance of Natural Sciences, 2005, 3:298-303.]

    [39]

    Brown E T, Burchfiel B C, Deng Q D, et al. Estimation of slip rates in the southern Tien Shan using cosmic ray exposure dates of abandoned alluvial fans[J]. Geological Society of America Bulletin, 1998, 110:377-386.

    [40]

    Schaller M, Blanckenburg F O, Veldkamp A, et al. A 30, 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces[J]. Earth and Planetary Science Letters, 2002, 204:307-320.

    [41]

    Lal D, Harris N B W, Sharma K K, et al. Erosion history of the Tibetan Plateau science the last interglacial:constrains from the first studies of cosmogenic 10Be from Tibatan bedrock[J]. Earth and Planetary Science Letters, 2003, 217:33-42.

    [42]

    Vance D, Bickle M, Ivy-Ochs S, et al. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments[J]. Earth and Planetary Science Letters, 2003, 206:273-288.

  • 加载中
计量
  • 文章访问数:  870
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2006-08-20
修回日期:  2006-11-18

目录