东太平洋海隆13°N附近沉积物岩心地球化学特征

袁春伟, 曾志刚, 殷学博, 王晓媛, 余少雄. 东太平洋海隆13°N附近沉积物岩心地球化学特征[J]. 海洋地质与第四纪地质, 2007, 27(4): 45-53.
引用本文: 袁春伟, 曾志刚, 殷学博, 王晓媛, 余少雄. 东太平洋海隆13°N附近沉积物岩心地球化学特征[J]. 海洋地质与第四纪地质, 2007, 27(4): 45-53.
YUAN Chun-wei, ZENG Zhi-gang, YIN Xue-bo, WANG Xiao-yuan, YU Shao-xiong. SEDIMENT GEOCHEMISTRY FROM 13°N EAST PACIFIC RISE HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 45-53.
Citation: YUAN Chun-wei, ZENG Zhi-gang, YIN Xue-bo, WANG Xiao-yuan, YU Shao-xiong. SEDIMENT GEOCHEMISTRY FROM 13°N EAST PACIFIC RISE HYDROTHERMAL FIELD[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 45-53.

东太平洋海隆13°N附近沉积物岩心地球化学特征

  • 基金项目:

    中国科学院知识创新工程重要方向项目(KZCX3-SW-223)

详细信息
    作者简介: 袁春伟(1981-),男,硕士生,主要从事海洋地球化学研究,E-mial:planet-yw@163.com
  • 中图分类号: P736.4

SEDIMENT GEOCHEMISTRY FROM 13°N EAST PACIFIC RISE HYDROTHERMAL FIELD

  • 对东太平洋海隆(EPR)13°N西侧2个沉积物岩心进行了碳酸盐、常量和微量元素测定。沉积物中Fe和Mn的含量较高,其中,E271站位沉积物岩心中Fe含量8.5%~13.8%,Mn含量1.7%~3.17%;E272站Fe含量6%~13%,Mn含量0.12%~3.31%,显示在EPR 13°N热液活动区西侧25~45 km处热液柱对沉积作用的影响明显。E271和E272站位CaCO3含量分别为5.9%~27.57%和6.67%~38.20%。热液柱的沉积作用,使Cu、Pb和Zn在沉积物中富集,Cu/Fe、Pb/Fe和Zn/Fe比值低于热液喷口处的颗粒物中值,Pb表现出在海水中运移距离较短或者只有少量Pb随热液柱扩散运移。热液柱在E271和E272站位的沉积作用使得Li、Mo和Ni在沉积物中富集,此外,V因为铁氧化物颗粒吸从海水中吸附并沉降到沉积物中。沉积物中Ti和Al有非常好的相关性,其Ti/Al比值为0.05左右,与太平洋深海沉积相比具有更高的铁含量,而U在岩心中的含量与深海沉积相似。
  • 加载中
  • [1]

    Elderfiel H,Schultz A.Mid-ocean ridge hydrothermal fluxes and the chemical composition of ocean[J].Annual Review of Earth and Planetary Sciences,1996,24:191-224.

    [2]

    Lupton J E,Delaney J R, et al.Entrainment and vertical transport of deep ocean water by buoyant hydrothermal plumes[J].Nature,1985,316:621-623.

    [3]

    Mottl M J,McConachy T F.Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N[J].Geochimica et Cosmochimica Acta,1990,54:1911-1927.

    [4]

    Bostrom K,Arquharson B F, et al.Submarine hot springs as a source of active ridge sediments[J].Chemical Geology,1972,10:189-203.

    [5]

    Hekinian R,Francheteau J, et al.Intense hydrothermal activity at the rise axis of the East Pacific Rise near13°N:submersible witnesses the growth of sulfide chimney[J].Marine Geophysical Research,1983,6(1):1-14.

    [6]

    Klitgord K D, Mammerickx J.Northern East Pacific Rise:magnetic anomaly and bathymetric framework[J].Journal of Geophysical Research,1982,87:6725-6750.

    [7]

    Michard G,Michard A, et al.Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site[J].Earth and Planetary Science Letters,1984,67:297-307.

    [8]

    Khripounoff A,Alberic P.Settling of particles in a hydrothermal vent field (East Pacific Rise 13°N) measured with sediment traps[J].Deep-Sea Research I,1991,38:729-744.

    [9]

    German C R,Colley S, et al.Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise[J].Deep-Sea Research I,2002,49:1921-1940.

    [10]

    王小如.电感耦合等离子之谱应用实例[M],北京:化学工业出版社,2005.196-203.[WANG Xiao-ru.Application of Induction Coupled Plasma Emission Spectrometry[M].Beijing:Chemica(Industry Press,2005:196

    -203.]

    [11]

    Goldberg E D and Arrhenius G O S.Chemistry of Pacific pelagic sediments[J].Geochimica et Cosmochimica Acta,1958,13:153-212.

    [12]

    Kyte F T,Leinen M, et al.Cenozoic sedimentation history of the central North Pacific:Inference from the elemental geochemistry of core LL44-GPC3[J].Geochimica et Cosmochimica Acta,1993,57:1719-1740.

    [13]

    Bostrom K,Peterson M N A, et al.Aluminum-poor ferromanganoan sediments on active oceanic ridges[J].Journal of Geophysical Research,1969,74:3261-3270.

    [14]

    Feely R A,Lewison M.Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge[J].Journal of Geophysical Research,1987,92:11347-11363.

    [15]

    Humphris S E, Thompson G.Trace element mobility during hydrothermal alteration of oceanic basalts[J].Geochimica et Cosmochimica Acta,1978,42:127-136.

    [16]

    Krauskopf K B.Factors controlling the concentrations of thirteen rare metals in sea-water[J].Geochimica et Cosmochimica Acta,1956,9:1-32.

    [17]

    Trefry J H, Metz S.Role of hydrothermal precipitates in the geochemical cycling of vanadium[J].Nature,1989,342:531-533.

    [18]

    Thompson G,Humphris S E, et al.Active vents and massive sulfides at 26°N (TAG) and 23°N (Snakepit) on the Mid Atlantic Ridge[J].Canadian Mineral,1988,26:697-711.

    [19]

    牟保磊.元素地球化学[M].北京:北京大学出版社,1999:156-162.[MU Bao-lei.Element Geochemistry[M].Beijing:Peking University Press,1999:156

    -162.]

    [20]

    Seyfried W E, Bischoff J L.Experimental seawater-basalt interaction at 300,500bar; chemical exchange,secondary mineral formation and implications for the transport of heavy metals[J].Geochimica et Cosmochimica Acta,1981,45:135-147.

    [21]

    Moorby S A.The geochemistry of transitional sediments recovered from the Galapagos Hydrothermal Mounds Field during DSDP Leg70-implication for mounds formation[J].Earth and Planetary Science Letters,1983,62:367-376.

    [22]

    Dymond J, Veeh H H.Metal accumulation rates in the Southeast Pacific and the origin of metalliferous sediments[J].Earth and Planetary Science Letters,1975,28:13-22.

  • 加载中
计量
  • 文章访问数:  754
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2007-03-06
修回日期:  2007-08-09

目录