Mineralogy, Geochemistry and Genesis of Giant Huoshaoyun Zn-Pb Deposit in Karakoram Area, Xinjiang, NW China
-
摘要: 近年来,青藏高原北缘喀喇昆仑铅锌找矿取得重大突破,新发现的火烧云超大型铅锌矿床已成为中国最大的铅锌矿床,矿石矿物以菱锌矿、白铅矿、水锌矿为主,也是世界第二大非硫化物铅锌矿床。矿体呈似层状产出,埋藏浅,主要为褐色块状矿石,Pb+Zn平均品位近30%。可分为3个成矿阶段。早期铅锌硫化物成矿阶段(方铅矿、闪锌矿、方解石)、中期铅锌非硫化物成矿阶段(菱锌矿、锰氧化物→菱锌矿、白铅矿、石膏)与晚期表生氧化阶段(水锌矿)。硫化物阶段方铅矿的δ34S为-18.9‰~-4.2‰,非硫化物阶段热液石膏的δ34S为-20.6‰~-7.5‰,继承了硫化物阶段矿物的硫同位素特征。Pb同位素组成集中,具有地壳来源特征,二叠系—白垩系可能提供了金属成矿物质。方解石的δ18CPDB为0.6‰~3.1‰,δ18OSMOW为15.3‰~24.6‰,菱锌矿的δ18CPDB为-2.7‰~4.5‰,δ18OSMOW为10.4‰~26.1‰,来源于碳酸盐岩的溶解作用;白铅矿的δ18CPDB为-7.7‰~4.3‰,δ18OSMOW为9.3‰~24.3‰,同位素发生漂移,可能是与大气降水的混入有关。硫化物成矿阶段方解石中流体包裹体的3He/4He值为0.05~0.39 R/Ra,40Ar/36Ar值为296.2~428.9,方铅矿中流体包裹体的3He/4He值为0.03 R/Ra,40Ar/36Ar值为290.0,成矿流体可能为中温、低盐度、中低密度的还原性壳源流体;非硫化物成矿阶段菱锌矿中流体包裹体的3He/4He值为0.10~0.43 R/Ra,40Ar/36Ar值为290.6~295.3;白铅矿中流体包裹体的3He/4He值为0.08 R/Ra,40Ar/36Ar值为293.5,成矿流体可能为中低温、低盐度、中密度的壳源流体与大气降水混合流体。综上所述,火烧云超大型铅锌矿床是盆地边缘褶皱逆冲+构造流体+次生交代成矿系统的产物,硫化物成矿阶段为构造热液成因,非硫化物成矿阶段为围岩交代成因,后期发生叠加氧化作用,形成大量水锌矿。Abstract: In recent years, a breakthrough has been made about the zinc and lead prospecting in Karakorum area of northern Qinghai-Tibet Plateau. The newly discovered giant Huoshaoyun zinc-lead deposit has become the largest zinc-lead deposit in China and the second largest nonsulfide zinc-lead deposit in the world. The ore bodies are layer-shaped, buried shallow with depth of 50 to 230 meters. The ores show brown color and massive structure, and the average grade of lead and zinc is nearly 30%. It can be divided into three metallogenic stages:early zinc-lead sulfide mineralization stage, intermediate zinc-lead nonsulfide mineralization stage and late oxidation stage. The first stage is characterized by galena, sphalerite and calcite; the second stage is represented by smithsonite, manganese oxide, cerussite, and gypsum; the last stage is characterized by hydrozincite. The δ34S values of the galena in the first stage range from -18.9‰ to -4.2‰. The δ34S values of gypsum in the second stage vary from -20.6‰ to -7.5‰, which inherits the sulfur isotope characteristics of minerals in the sulfide stage. The lead isotope compositions are concentrated and show a crustal source feature, and the Permian-Cretaceous sedimentary rocks may be the sources of metals. The δ18CPDB and δ18OSMOW values of calcite range from 0.6‰ to 3.1‰ and from 15.3‰ to 24.6‰, respectively. The δ18CPDB and δ18OSMOW values of the smithsonite vary from -2.7‰ to 4.5‰ and from 10.4‰ to 26.1‰, respectively. All these values indicate the dissolution of carbonate. The δ18CPDB and δ18OSMOW values of the cerussite range from -7.7‰ to 4.3‰ and from 9.3‰ to 24.3‰, respectively, indicating the mixing of atmospheric precipitation. The 3He/4He and 40Ar/36Ar ratios of the fluid inclusions in the calcite vary from 0.05 R/Ra to 0.39 R/Ra and from 296.2 to 428.9, respectively; and the 3He/4He and 40Ar/36Ar ratios of fluid inclusions in the galena are 0.03 R/Ra and 290.0, respectively. Thus, the ore-forming fluid of the first sulfide metallogenic stage may be medium-temperature, low salinity, and medium-low density reducing fluid from the crust. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions in the nonsulfide metallogenic stage range from 0.10 R/Ra to 0.43 R/Ra and from 290.6 to 295.3, respectively; the 3He/4He and 40Ar/36Ar ratios of fluid inclusions in cerussite are 0.08 R/Ra and 293.5, respectively. Thus, the ore-forming fluid of the nonsulfide metallogenic stage may be medium-low temperature, low salinity, and medium density fluid from crust mixed with atmospheric precipitation. In summary, the giant Huoshaoyun zinc-lead deposit is the product of basin fold thrust in the edge of a basin, with the activities of structure fluids and secondary replacement system. The sulfides are formed with the activities of structure fluids, and the nonsulfides are the result of wall rock replacement. At the last stage, the oxidation occurred and the hydrozincites formed.
-
Key words:
- mineralogy /
- geochemistry /
- sulfide /
- nonsulfide /
- Huoshaoyun Zn-Pb deposit /
- Karakoram
-
-
董连慧, 徐兴旺, 范廷宾, 等. 喀喇昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.
DONG Lianhui, XU Xingwang, FAN Tingbin, et al. Discovery of the Huoshaoyun Super-Large Exhalative-Sedimentary Carbonate Pb-Zn Deposit in the Western Kunlun Area and its Great significance for Regional Metallogeny[J].Xinjiang Geology, 2015, 33(1):41-50.
范廷宾, 余元军, 夏明毅, 等. 新疆和田县火烧云铅锌矿地质特征及其找矿[J]. 四川地质学报, 2017, 37(4):578-582.
FAN Tingbin,YU Yuanjun,XIA Mingyi, et al. Geological Features and Prospecting for the Huoshaoyun Pb-Zn Deposit in Hotan, Xinjiang[J]. Acta Geologica Sichuan, 2017, 37(4):578-582.
范廷宾, 李昊, 徐兴旺, 等.非硫化物型锌-铅矿床研究现状及其进展[J]. 西北地质, 2018, 51(2):147-159.
FAN Tingbin, LI Hao, XU Xingwang, et al. Research Status and Progress of Nosulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2):147-159.
高永宝, 滕家欣, 李侃. 喀喇昆仑火烧云超大型铅锌矿床成矿特征与成因[J]. 矿物学报, 2017, (增刊):561-562.
GAO Yongbao, TENG Jiaxin, LI Kan. Metallogenic Characteristics and Genesis of Huoshaoyun Super-Large Lead-Zinc Deposit in Karakorum[J]. Journal of Minerals, 2017, (Suppl.):561-562.
胡瑞忠, 毕献武, TURNER G, 等. 哀牢山金矿带成矿流体He和Ar同位素地球化学[J].中国科学 D 辑:地球科学, 1999, 29:321-330.
HU Ruizhong, BI Xianwu, TUMER G, et al. Geochemistry of He and Ar isotopes of Gold-Forming fluids in Ailaoshan Gold Belt[J]. Science In China (Series D):Geosciences, 1999, 29:321-330.
王松, 丰成友, 佘宏全, 等. 粤东麻坑非硫化物型锌矿锌的赋存状态及成因讨论[J]. 地质学报, 2008, 82(11):1547-1554.
WANG Song, FENG Chengyou, SHE Hongquan, et al. Zinc Occurrence and Genesis of Makeng Nonsulfide Zinc Deposits in the Eastern Guangdong Province[J]. Acta Geologica Sinica, 2008, 82(11):1547-1554.
王旭东, 倪培, 蒋少涌, 等. 江西漂塘钨矿成矿流体来源的He和Ar同位素证据[J]. 科学通报, 2009, 54(21):3338-3344.
WANG Xudong, NI Pei, JIANG Shaoyong, et al. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province:Evidence from Helium and argon isotopes[J]. Chinese Science Bulletin, 2009, 54(21):3338-3344.
新疆地质矿产勘查开发局第八地质大队. 新疆和田县火烧云矿区铅锌矿勘探报告[R]. 乌鲁木齐:新疆维吾尔自治区地质勘查基金项目管理中心地质勘查报告,2016, 1-54.
杨永强, 李丽. 非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质, 2010, 29(1):56-59.
YANG Yongqiang, LI Li. Geological characteristics and formation mechanism of nonsulfide zinc deposit[J]. Global Geology, 2010, 29(1):56-59.
郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社, 2000:1-316.
ZHENG Yongfei, CHEN Jiangfeng. Geochemistry of Stable isotope[M]. Beijing:Science Press, 2000:1-316.
朱炳泉, 李献华. 地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M]. 北京:科学出版社, 1998:1-47.
ZHU Bingquan, LI Xianhua. Isotopic systematic theory and application in Earth sciences:concurrently discussing crust-mantle evolution of Chinese continent[M]. Beijing:Science Press, 1998:1-47.
赵晓健, 伍跃中, 王泰山, 等. 西昆仑乔尔天山-岔路口地区铅锌矿成矿特征及找矿标志[J]. 西北地质, 2014, 47(4):245-255.
ZHAO Xiaojian, WU Yuezhong, WANG Taishan, et al.Metallogenic characteristics and Prospecting Criteria of Lead-zinc Deposits in Qiao'er Tianshan-Chalukou Region of west Kunlun[J]. Northwestern Geology, 2014, 47(4):245-255.
BURNARD PG, HU R, TURNER G, et al. Mantle,crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China[J]. Geochimica et Cosmochimica Acta, 1999, 63:1595-1604.
BONI M and LARGE D. Nonsulfide Zinc Mineralization in Europe:An Overview[J]. Economic Geology, 2003, 98(4):715-729.
BONI M and MONDILLO N. The "Calamines" and the "Others":The Great Family of Supergene Nonsulfide Zinc Ores[J]. Ore Geology Reviews, 2015, 67:208-233.
GONFIANTINI R, STICHLER W, ROZANSKI K. Standards and Intercomparison Materials Distributed by the International Atomic Energy Agency for Stable Isotope Measurements. In Reference and Intercomparison Materials for Stable Isotopes of Light elements[M], IAEA, Vienna, Austria:the Isotope Hydrology Section of the International Atomic Energy Agency. 1995, 13-29.
GAO Yongbao. The Giant HuoshaoyunNonsulfide Zinc Deposit in Karakorum, North Margin of Tibet Plateau[A]. In:Abstract Volume to the Thematic Session at the 52nd CCOP Annual Session[C]. 2016, 104.
HITZMAN M W, Reynolds N A, Sangster D F, et al. Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits[J]. Economic Geology, 2003, 98(4):685-714.
HOEFS J. Stable Isotope Geochemistry[M]. 3rd Edition. Berlin:Springer-Verlag. 1987, 241.
LARGE D. The Geology of Nonsulphide Zinc Deposits-an Overview[J]. Erzmetall, 2001, 54:264-276. OHMOTO H, RYE RO. Isotopes of sulfur and carbon. In:Barnes HL(ed.). Geochemistry of Hydrothermal Ore Deposits[M]. 2nd Edition. New York:J.Wiley and Sons, Inc. 1979, 798.
OHMOTO H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5):551-578.
REICHERT J and BORG G. Numerical Simulation and Geochemical Model of Supergene Carbonate-hosted Non-sulphide Zinc Deposits[J]. Ore Geology Reviews, 2008, 33(2):134-151.
STUART FM, BURNARD PG, TAYLOR RP, et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralization, S. Korea[J]. Geochimica et Cosmochimica Acta, 1995, 59:4663-4673.
SANGSTER D F. Mississippi Valley-type and Sedex Lead-zinc Deposits:a Comparative Examination[J]. Transaction-Instiution of Mining and Metallurgy (Sect. B:Applied Earth Sciences), 1990, 99:21-42.
TAYLOR HP. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 1986, 69:843-883.
TAYLOR SR and MCLENNAN SM. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33:241-265.
TRULL TW, KURZ MD, JENKINS W J. Diffusion of cosmogenic3He in olivine and quartz:Implications for surface exposure dating[J]. Earth and Planetary Science Letters, 1991, 103:241-256.
VEIZER J and HOEFS J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonaterocks[J]. Geochimica et Cosmochimica Acta, 1976, 40:1387-1395.
ZARTMAN R E and DOE B R. Plumbotectonics-The model[J]. Tectonophysics, 1981, 75:135-162.
-
计量
- 文章访问数: 2713
- PDF下载数: 810
- 施引文献: 0