In-situ Determination of Rare Earth Elements in Scheelite by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
-
摘要: 白钨矿的稀土元素含量及标准化配分模式图可以作为判断矿床成因的重要依据,其原位分析更有利于在单个矿物层面剖析成矿流体演化等特征。本文采用配备193 nm ArF准分子激光器的GeoLasPro剥蚀系统(LA)和电感耦合等离子体质谱仪(ICP-MS)对云南大坪金矿含金石英脉白钨矿中的稀土元素进行LA-ICP-MS原位分析。分析结果表明,选用玻璃标准参考物质NIST 610作为外标,Ca作为内标元素,可以对稀土元素进行较为精准的测量。阴极发光图显示,大坪金矿含金石英脉中的白钨矿晶体内部成分分布较为均匀,其稀土元素球粒陨石标准化曲线特征一致,为明显的中稀土富集型,稀土总量(ΣREEs)很高,介于918.00~2094.97 μg/g之间,δEu为1.17~1.95,有较明显的Eu正异常,无明显的Ce异常,但各元素含量在一定范围内有变动,体现出其稀土元素含量分布不完全均一的特征。首次对同一白钨矿样品的LA-ICP-MS原位分析和ICP-MS溶液分析结果进行对比研究,用实验数据论证了LA-ICP-MS原位分析方法的准确可靠性。事实证明,样品溶液ICP-MS分析所得的结果只能代表所溶样品的平均含量,而采用LA-ICP-MS可以在较高空间分辨率条件下( < 40 μm)对白钨矿稀土元素进行快速、原位分析,这对稀土元素含量分布不均匀的白钨矿样品测试有着更为重要的意义。
-
关键词:
- 白钨矿 /
- 稀土元素 /
- 激光剥蚀-电感耦合等离子体质谱原位分析 /
- 溶液进样-电感耦合等离子体质谱分析
Abstract: Rare earth elements (REEs) composition and chondrite-normalized REEs patterns of scheelites can be used as an important basis to determine the genesis of deposits. In-situ determination is more conducive to analysis of ore-forming fluid evolution characteristics in terms of single minerals. REEs compositions in scheelite from auriferous quartz veins in Daping gold deposit were analyzed in-situ by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) coupled with 193 nm ArF excimer GeoLasPro laser ablation system and are reported in this paper. The results show that analysis of scheelite can yield precise and accurate data for REEs by using NIST 610 as the external standard and Ca as the internal standard. The cathode luminescence images show that the crystal composition of scheelite is relatively homogeneous. The experimental results show that they have very similar MREEs-enriched patterns with chondrite-normalized, which have very high ΣREEs(918.00-2094.97 μg/g), obvious positive anomaly of δEu(1.17-1.95), and no anomaly of Ce.However, the content of each element changes within a certain range, which reflects that the REEs distributions are not exactly homogeneous. Comparing the analysis results of in-situ Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry(LA-ICP-MS) and solution nebulization ICP-MS, the accuracy and reliability of the in-situ LA-ICP-MS method is demonstrated for the first time. Based on all the results, routine digestion and ICP-MS analytical method provide the average contents of a bulk sample. By comparison, LA-ICP-MS has the advantages of being a rapid method with high spatial resolution ( < 40 μm) and in-situ analysis, which is more important for scheelites which host an inhomogeneous rare earth elements distribution. -
-
图 2 大坪金矿白钨矿LA-ICP-MS稀土元素球粒陨石标准化配分曲线(球粒陨石数据据Sun等[26])
Figure 2.
表 1 LA-ICP-MS仪器工作参数
Table 1. Working parameters for LA-ICP-MS instrument
ICP-MS工作参数 工作参数 设定条件 RF功率 1550 W 载气流量 0.97 L/min 采样深度 8 mm 积分时间 6 ms 分析时间 90 s(背景采集时间20 s;
信号收集时间45 s)激光剥蚀系统工作参数 工作参数 设定条件 波长 193 nm 能量密度 5 J/cm2 频率 5 Hz 斑束直径 32 μm 剥蚀腔载气
He流量0.6 L/min 表 2 LA-ICP-MS测定NIST 612和GSE-1G中稀土元素的含量①
Table 2. REE contents of NIST 612 and GSE-1G using LA-ICP-MS
标准物质编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y NIST 612-01 37.84 38.29 36.82 36.35 38.83 36.71 36.12 37.67 34.29 37.86 35.51 35.60 37.69 36.39 37.36 NIST 612-02 37.56 38.32 37.11 38.43 38.80 37.60 36.32 38.87 36.11 38.98 37.08 37.08 41.33 37.26 38.27 NIST 612-03 37.47 37.83 36.00 36.30 39.30 36.52 34.82 37.93 34.61 37.87 35.74 35.78 38.97 36.92 37.97 NIST 612-04 37.86 39.25 37.09 37.22 37.60 37.54 36.45 38.46 35.17 39.11 36.84 35.94 38.93 36.89 37.51 NIST 612-05 37.73 39.40 37.10 36.52 37.98 37.74 36.27 38.15 35.98 38.62 37.03 36.03 39.67 36.79 38.28 NIST 612-06 37.41 37.66 36.71 35.16 37.26 36.46 35.50 37.32 35.01 37.84 36.49 35.75 40.61 35.92 37.75 NIST 612-07 37.25 37.71 36.74 35.50 36.72 37.69 35.66 37.53 34.61 38.90 35.81 36.15 40.26 36.88 37.85 NIST 612-08 38.00 37.81 36.54 34.25 38.38 36.29 35.61 37.81 34.84 38.49 36.86 35.28 38.89 36.05 36.52 NIST 612-09 38.23 39.11 36.11 34.16 39.35 37.14 35.41 37.44 34.92 38.18 35.58 36.12 38.30 36.34 37.54 NIST 612-10 37.51 38.93 36.56 34.36 35.20 36.25 36.30 38.13 33.90 38.02 35.23 36.11 40.03 36.39 38.13 NIST 612-11 38.06 38.51 36.70 36.18 38.50 36.85 35.24 37.98 35.81 38.39 36.44 36.83 39.06 36.62 38.38 NIST 612-12 36.09 36.52 35.64 35.39 35.94 35.98 36.14 36.80 34.82 37.59 35.52 35.37 39.08 35.51 37.22 NIST 612平均值 37.58 38.28 36.59 35.82 37.82 36.90 35.82 37.84 35.01 38.32 36.18 36.00 39.40 36.50 37.73 NIST 612标准值② 36.00 38.40 37.20 35.50 37.70 35.60 36.70 36.00 35.50 38.30 38.00 36.80 39.20 37.00 38.30 相对误差/%③ 4 0 -3 1 0 4 -4 1 -1 0 -5 -2 1 -1 -1 RSD/% 1 2 1 4 4 2 1 1 2 1 2 1 3 1 1 标准物质编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y GSE-1G-01 411.68 413.74 449.34 446.33 489.08 426.99 474.13 495.06 514.08 508.35 514.15 498.50 526.31 517.58 405.51 GSE-1G-02 407.47 414.91 450.14 453.36 494.82 426.72 474.37 497.66 513.94 514.77 525.21 499.67 525.56 521.73 404.45 GSE-1G-03 394.76 403.18 439.03 436.65 476.30 417.22 462.34 484.52 501.74 501.10 496.70 488.46 514.73 509.48 391.24 GSE-1G-04 407.61 424.16 448.78 450.52 490.49 424.68 471.97 494.64 512.15 506.44 527.31 489.80 518.45 516.53 398.07 GSE-1G-05 402.68 414.41 446.64 446.39 480.05 421.53 468.49 487.45 511.01 498.64 533.99 481.03 515.06 503.62 398.03 GSE-1G-06 406.58 414.71 446.58 455.12 489.80 420.58 473.03 491.96 508.37 503.99 621.08 490.88 521.60 512.85 396.55 GSE-1G-07 410.20 416.97 450.45 449.47 492.17 419.64 473.95 484.44 505.56 497.02 605.94 484.62 521.37 507.18 400.87 GSE-1G-08 409.13 418.61 449.36 438.48 483.06 420.86 474.21 496.04 518.48 506.59 558.31 487.37 528.13 510.10 400.90 GSE-1G-09 387.41 397.32 432.28 435.88 459.94 408.77 456.15 473.13 496.32 485.90 539.77 472.20 504.42 495.30 382.76 GSE-1G-10 402.63 412.14 439.16 439.37 474.90 418.55 470.33 483.43 507.86 500.19 543.27 484.83 525.26 507.50 398.10 GSE-1G-11 404.33 407.87 442.96 446.67 480.69 417.83 467.80 483.89 505.14 493.05 559.01 481.72 514.51 502.52 395.92 GSE-1G-12 400.30 406.99 449.42 443.24 471.10 420.90 462.67 485.16 503.39 496.83 572.69 484.34 512.38 505.19 398.51 GSE-1G平均值 403.73 412.08 445.35 445.12 481.87 420.36 469.12 488.12 508.17 501.07 549.79 486.95 518.98 509.13 397.58 GSE-1G标准值② 392 414 460 453 488 410 514 480 524 501 595 500 520 518 410 相对误差/% 3 0 -3 -2 -1 3 -9 2 -3 0 -8 -3 0 -2 -3 RSD/% 2 2 1 1 2 1 1 1 1 2 7 2 1 1 2 注:①元素含量测定的单位为μg/g。②NIST 612和GSE-1G的标准值据GeoReM推荐值。③相对误差=(测定平均值-推荐值)/推荐值×100%。 表 3 大坪金矿白钨矿LA-ICP-MS与溶液ICP-MS稀土元素分析结果及相关参数①
Table 3. REE contents and relative parameters of scheelites from Daping gold mine using LA-ICP-MS and ICP-MS
元素 04107-01 04107-02 04107-03 04107-04 04107-05 04107-06 04107-07 04107-08 04107-09 04107-10 04107-11 04107-12 04107-13 04107-14 04107-15 04107-16 04107-17 04107-18 04107-19 04107-20 RSD/% 04130-01 04130-02 04130-03 04130-04 04130-05 04130-06 04130-07 04130-08 04130-09 04130-10 04130-11 04130-12 04130-13 04130-14 04130-15 04130-16 04130-17 04130-18 04130-19 04130-20 RSD/% 04107溶液法③ 04130溶液法③ La 14.73 19.59 21.35 35.86 35.96 22.91 24.40 26.99 43.56 45.94 15.99 23.82 23.57 24.76 27.74 28.62 31.41 47.38 26.19 12.45 35.6 16.48 11.70 11.29 5.78 46.79 41.18 36.46 38.44 39.25 40.76 29.23 29.55 30.70 14.14 38.19 41.90 26.04 46.00 39.01 43.29 41.0 33.9 38.44 Ce 136.16 178.98 194.40 249.47 248.69 189.22 196.42 222.11 322.96 315.61 131.64 191.24 196.11 214.12 229.49 219.67 241.69 336.99 218.70 139.27 26.2 151.04 94.89 97.97 69.17 352.75 295.59 271.93 298.56 296.41 310.64 244.95 228.88 229.34 169.52 246.03 276.39 210.98 338.67 292.68 326.77 35.0 241.9 281.03 Pr 41.76 54.08 51.83 59.82 57.56 53.03 53.41 58.26 76.02 68.49 41.52 54.93 55.19 62.38 58.52 55.48 59.21 78.20 56.56 43.91 16.6 46.83 29.00 32.86 26.65 90.17 76.02 70.45 79.83 75.07 77.88 65.57 62.15 61.64 54.07 60.83 66.68 57.25 85.35 78.85 84.42 29.1 56.3 68.45 Nd 335.31 395.75 353.27 355.10 358.34 347.91 374.00 397.55 452.10 386.65 336.88 413.06 398.56 449.08 395.87 348.92 386.39 467.78 370.23 347.76 10.1 400.73 244.07 288.25 253.88 617.51 542.74 478.70 574.04 535.14 528.90 472.68 439.25 453.97 422.05 405.76 440.08 401.81 594.32 570.21 580.83 23.9 359.5 441.07 Sm 152.02 158.77 128.83 115.60 118.39 130.96 143.18 145.19 129.14 102.45 184.74 181.05 170.71 179.23 143.55 117.96 132.30 135.31 121.99 135.48 16.5 200.91 124.51 146.80 134.71 225.48 196.89 174.73 218.30 195.03 194.02 183.35 170.13 174.28 173.78 132.88 145.34 145.61 216.03 220.21 206.24 17.80 132.10 163.26 Eu 77.14 97.09 87.08 75.23 70.44 77.67 81.81 86.16 84.67 65.31 59.98 91.40 102.28 107.90 84.02 77.49 82.90 86.64 63.65 60.48 16.2 92.71 57.60 62.71 63.17 104.20 85.82 79.22 98.15 86.72 93.42 89.03 82.58 87.51 88.89 64.88 67.05 63.37 100.98 105.89 95.37 18.30 68.50 74.92 Gd 181.60 181.67 144.09 119.28 130.98 152.77 169.66 166.46 139.58 111.71 238.95 208.62 196.98 210.26 152.17 127.32 149.11 137.50 125.34 157.37 21.3 250.01 155.12 183.17 171.97 256.61 228.09 201.77 262.39 227.51 222.44 217.12 199.16 209.83 212.01 150.48 171.44 172.17 259.36 269.23 243.80 17.40 160.50 176.80 Tb 29.50 29.51 24.68 20.60 21.24 25.25 28.34 26.98 21.74 18.25 38.27 32.32 32.39 35.18 24.88 21.46 24.64 21.92 19.22 23.34 21.1 37.10 23.93 26.86 25.78 42.82 37.07 33.44 43.86 37.90 37.00 35.24 32.40 33.75 34.93 24.90 28.25 28.24 42.42 45.35 40.70 19.10 22.90 25.73 Dy 161.59 154.86 140.43 120.27 119.78 138.98 156.42 149.50 122.17 103.24 199.03 168.58 181.13 195.13 135.28 127.07 144.81 122.95 104.48 122.10 19.2 188.48 119.27 134.57 130.15 229.80 197.31 177.44 236.02 202.80 198.64 183.17 171.64 183.63 192.73 133.92 159.78 158.03 234.97 251.31 217.77 20.50 137.10 139.62 Ho 26.40 26.18 24.31 20.67 20.91 24.18 26.65 25.19 21.19 17.80 31.02 26.54 30.81 32.82 22.52 22.94 24.89 21.36 16.79 19.95 17.6 28.42 17.65 20.17 19.55 36.10 31.56 28.29 38.06 33.41 32.06 29.16 27.67 29.96 31.61 22.00 26.29 26.22 38.40 40.53 35.68 21.80 23.60 25.59 Er 51.69 51.32 52.95 46.62 43.57 51.31 57.41 50.39 46.73 40.12 57.04 48.06 64.13 66.94 44.53 50.71 53.39 44.07 34.09 38.72 16.2 48.59 29.72 34.28 33.03 67.13 55.50 50.61 68.71 60.80 59.84 53.06 48.57 55.77 59.54 40.69 49.83 48.16 69.86 74.42 65.13 23.50 51.00 49.37 Tm 4.61 4.74 5.06 4.91 4.26 4.85 5.40 4.89 4.65 4.09 4.76 4.14 5.91 6.55 4.20 5.21 5.33 4.35 3.07 3.44 16.7 3.81 2.19 2.52 2.53 5.18 4.37 4.19 5.40 4.97 4.93 4.39 3.84 4.45 4.90 3.43 4.24 3.79 5.71 6.14 5.22 24.8 4.70 3.91 Yb 17.85 19.01 23.55 22.44 18.54 20.12 21.68 22.07 20.46 17.65 17.48 16.16 25.08 26.65 17.07 24.29 23.09 18.49 12.23 13.52 19.0 13.36 7.79 9.12 9.12 19.17 15.22 15.68 18.33 16.78 18.20 14.87 12.81 16.80 16.91 11.87 15.74 13.82 20.24 21.33 19.88 24.90 17.50 12.87 Lu 1.51 1.50 1.91 1.96 1.55 1.67 1.99 1.78 1.69 1.54 1.39 1.16 2.06 2.01 1.33 1.87 1.97 1.62 0.95 1.04 20.3 1.01 0.55 0.59 0.66 1.26 1.21 1.09 1.42 1.32 1.29 1.11 1.07 1.27 1.26 0.86 1.22 1.07 1.53 1.58 1.38 25.40 1.60 1.21 Y 453.94 464.75 528.83 487.63 425.69 507.18 528.26 503.61 507.57 446.83 406.45 431.50 580.93 621.42 422.32 518.44 537.24 493.29 352.02 361.03 14.3 419.67 244.32 284.73 285.88 573.49 479.55 447.38 555.61 524.26 536.48 467.71 434.98 490.29 517.93 366.23 448.74 421.45 623.63 640.01 589.50 23.60 546.80 502.99 ΣREEs② 1231.87 1373.05 1253.74 1247.83 1250.21 1240.83 1340.77 1383.52 1486.66 1298.85 1358.69 1461.08 1484.91 1613.01 1341.17 1229.01 1361.13 1524.56 1173.49 1118.83 1479.48 918.00 1051.16 946.15 2094.97 1808.57 1624.00 1981.51 1813.11 1820.02 1622.93 1509.70 1572.90 1476.34 1336.72 1494.23 1356.56 2053.84 2016.74 1966.48 1311.17 1502.27 LREEs 757.12 904.26 836.76 891.08 889.38 821.70 873.22 936.26 1108.45 984.45 770.75 955.50 946.42 1037.47 939.19 848.14 933.90 1152.30 857.32 739.35 908.70 561.77 639.88 553.36 1436.90 1238.24 1111.49 1307.32 1227.62 1245.62 1084.81 1012.54 1037.44 922.45 948.57 1037.44 905.06 1381.35 1306.85 1336.92 892.18 1067.17 HREEs 474.75 468.79 416.98 356.75 360.83 419.13 467.55 447.26 378.21 314.40 587.94 505.58 538.49 575.54 401.98 380.87 427.23 372.26 316.17 379.48 570.78 356.23 411.28 392.79 658.07 570.33 512.51 674.19 585.49 574.40 538.12 497.16 535.46 553.89 388.15 456.79 451.50 672.49 709.89 629.56 418.99 435.10 1.59 1.93 2.01 2.50 2.46 1.96 1.87 2.09 2.93 3.13 1.31 1.89 1.76 1.80 2.34 2.23 2.19 3.10 2.71 1.95 1.59 1.58 1.56 1.41 2.18 2.17 2.17 1.94 2.10 2.17 2.02 2.04 1.94 1.67 2.44 2.27 2.00 2.05 1.84 2.12 2.13 2.45 LaN/YbN 0.59 0.74 0.65 1.15 1.39 0.82 0.81 0.88 1.53 1.87 0.66 1.06 0.67 0.67 1.17 0.85 0.98 1.84 1.54 0.66 0.88 1.08 0.89 0.45 1.75 1.94 1.67 1.50 1.68 1.61 1.41 1.65 1.31 0.60 2.31 1.91 1.35 1.63 1.31 1.56 1.39 2.14 δEu 1.42 1.74 1.95 1.94 1.72 1.67 1.60 1.69 1.92 1.86 0.87 1.43 1.70 1.70 1.73 1.92 1.80 1.92 1.56 1.26 1.26 1.27 1.17 1.27 1.32 1.23 1.29 1.25 1.26 1.37 1.36 1.37 1.40 1.41 1.40 1.30 1.22 1.30 1.33 1.30 1.44 1.34 δCe 0.89 0.90 1.00 1.04 1.07 0.94 0.97 1.00 1.07 1.13 0.85 0.92 0.94 0.92 1.02 1.02 1.05 1.08 1.01 0.88 0.88 0.87 0.81 0.74 1.01 0.99 0.99 0.97 1.01 1.02 0.98 0.96 0.96 0.88 1.00 1.03 0.97 1.01 0.96 1.00 1.07 1.04 注:①元素含量测定的单位为μg/g;球粒陨石REEs数据据Sun等[26]。②ΣREEs未包括Y元素的含量。③数据引自熊德信等[23] -
[1] Ghaderi M, Palim J M, Campbell I H, Sylvester P J.Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J].Economic Geology, 1999, 94: 423-438. doi: 10.2113/gsecongeo.94.3.423
[2] Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R. Inhomogeneous distribution of REE in scheelites and dynamics of Archaean hydrothermal systems(Mt. Charlotte and Drysdale gold deposits, Western Australia)[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 251-264. doi: 10.1007/s004100000135
[3] Brugger J, Giere R, Grobety B, Uspensky E. Scheelite-powellite and paraniite-(Y) from the Fe-Mn deposit at Fianel, Eastern Swiss Alps[J].American Mineralogist, 1998, 83: 1100-1110. doi: 10.2138/am-1998-9-1019
[4] 曾志刚,李朝阳,刘玉平,涂光炽.滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J].地质地球化学,1998, 26(2): 34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199802005.htm
[5] Brugger J, Maas R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R, Prince K. Origins of Nd-Sr-Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia[J]. Chemical Geology, 2002, 182: 203-225. doi: 10.1016/S0009-2541(01)00290-X
[6] 彭建堂,胡瑞忠,赵军红,符亚洲,林源贤.湘西沃溪Au-Sb-W矿床中白钨矿Sm-Nd和石英Ar-Ar定年[J].科学通报,2003,48(18): 1976-1981. doi: 10.3321/j.issn:0023-074X.2003.18.015
[7] 彭建堂,胡瑞忠,赵军红,符亚洲,袁顺达.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学,2005, 34(2): 115-122. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502002.htm
[8] 柳小明,高山,第五春荣,袁洪林,胡兆初.单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J].科学通报,2007,52(2): 228-235.
[9] 汤倩,孙晓明,梁金龙,徐莉,翟伟,梁业恒.CCSD HP-UHP变质岩中磷灰石稀土元素(REE)地球化学及其示踪意义[J].岩石学报,2007, 23(12): 3255-3266. doi: 10.3969/j.issn.1000-0569.2007.12.018
[10] Prince C I, Kosler J, Vance D, Günther D.Comparison of laser ablation ICP-MS and isotope dilution REE analyses-Implications for Sm-Nd garnet geochronology[J].Chemical Geology, 2000, 168: 255-274. doi: 10.1016/S0009-2541(00)00203-5
[11] 宗克清,刘勇胜,柳小明,张斌辉.CCSD主孔100~1100m榴辉岩中单矿物的原位微区微量元素地球化学研究[J].岩石学报,2006, 22(7): 1891-1904. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200607015.htm
[12] Gagono J E, Samson I M, Fryer B J, Williams-Jones A E.Compositional heterogeneity in fluorite and the genesis of fluorite deposits: Insights from LA-ICP-MS analysis[J].Canadian Mineralogist, 2003, 41: 365-382. doi: 10.2113/gscanmin.41.2.365
[13] 漆亮,胡静,许东禹.激光熔蚀-等离子体质谱法测定锰结壳中的稀土及微量元素[J].分析试验室,2000,19(4): 56-59. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200004021.htm
[14] 薛婷,孙晓明,张美,刘珊珊,何高文,王生伟,陆红锋.西太平洋海山富钴结壳稀土元素(REE)组成原位LA-ICPMS测定[J].岩石学报,2008, 24(10): 2423-2432. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810023.htm
[15] Sylvester P J, Ghaderi M.Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard[J].Chemical Geology, 1997, 141: 49-65. doi: 10.1016/S0009-2541(97)00057-0
[16] 彭建堂,张东亮,胡瑞忠,吴梦君,柳小明,漆亮,虞有光.湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J].地质论评,2010,56(6): 810-819. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006007.htm
[17] 金世昌,韩润生.改造型矿床的成矿热液系统地球化学特征--以元阳金矿床为例[J].云南地质,1994,13(1): 17-22. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD401.001.htm
[18] 毕献武,胡瑞忠,何明友.哀牢山金矿带的成矿时代及其成矿机制探讨[J].地质地球化学,1996(1): 16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199601020.htm
[19] 韩润生,金世昌,雷丽.云南元阳大坪改造型金矿床的成矿热液系统地球化学[J].矿物学报,1997,17(3): 337-344. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199703015.htm
[20] 应汉龙.云南大坪金矿床围岩蚀变和同位素地球化学特征[J].黄金科学技术,1998,6(4): 14-23. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ804.002.htm
[21] 毕献武,胡瑞忠,何明友.哀牢山金矿带成矿流体稀土元素地球化学[J].地质论评,1998,44(3): 264-269. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199803007.htm
[22] 毕献武,胡瑞忠.云南大坪金矿床矿化剂来源及其对金成矿的制约[J].矿物学报,1999,19(1): 28-33. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199901005.htm
[23] 熊德信,孙晓明,石贵勇,王生伟,高剑锋,薛婷.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报,2006, 22(3): 733-741. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603023.htm
[24] 熊德信,孙晓明,石贵勇.云南哀牢山喜马拉雅期造山型金矿带矿床地球化学及成矿模式[M].北京:地质出版社,2007: 44-58.
[25] Sun X M, Zhang Y, Xiong D X, Sun W D, Shi G Y, Zhai W, Wang S W.Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China[J].Ore Geology Reviews, 2009, 36(1-3): 235-249. doi: 10.1016/j.oregeorev.2009.05.002
[26] Sun S S, McDonough W F.Chemical and Isotope Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[M]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society, 1989: 313-345.
-