中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素

罗学辉, 苏建芝, 鹿青, 杨理勤, 王岚. 熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素[J]. 岩矿测试, 2014, 33(2): 230-235.
引用本文: 罗学辉, 苏建芝, 鹿青, 杨理勤, 王岚. 熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素[J]. 岩矿测试, 2014, 33(2): 230-235.
Xue-hui LUO, Jian-zhi SU, Qing LU, Li-qin YANG, Lan WANG. Fused Pellet-Determination of 16 Elements in Copper Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 230-235.
Citation: Xue-hui LUO, Jian-zhi SU, Qing LU, Li-qin YANG, Lan WANG. Fused Pellet-Determination of 16 Elements in Copper Ores by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 230-235.

熔融制样X射线荧光光谱法测定铜矿石中16种主次量元素

  • 基金项目:
    中国人民武装警察部队黄金专项(HKY2012-04)
详细信息
    作者简介: 罗学辉,工程师,从事X射线荧光光谱分析工作。E-mail:ls19760811@sohu.com
  • 中图分类号: P618.41; O657.34

Fused Pellet-Determination of 16 Elements in Copper Ores by X-ray Fluorescence Spectrometry

  • 铜矿石类型繁多,矿石赋存状态各异,成分复杂。在现有的铜矿石熔融制样X射线荧光光谱(XRF)分析方法中,选取标准物质个数和矿石类型少、分析范围宽,与实际样品类型相差太大,且制备的熔融片质量不高。本文选用铜含量既有良好浓度变化范围,又符合铜矿石常见含量的包括铜金银铅锌钼铜镍等各类矿石的24个标准物质,以四硼酸锂-偏硼酸锂-氟化锂为混合熔剂,熔剂与样品质量比为30:1,以溴化锂为脱模剂,改进样品预处理方式,将通常采用样品预氧化后或熔融中加入脱模剂的方式,改进为加入脱模剂后再用混合熔剂完全覆盖的方法制备了高质量的熔融片,建立了XRF测定铜矿石中铜锌铅硅铝铁钛锰钙钾镁钼铋锑钴镍16种元素的分析方法。分析铜矿石国家标准物质GBW 07164、GBW 07169,各元素的精密度(RSD)为0.1%~5.4%。分析国家标准物质GBW 07163(多金属矿石)、GBW 07170(铜矿石)的测定值与标准值相符;分析实际铜矿石样品,铜锌铅钼铋锑钴镍的测试结果与电感耦合等离子体发射光谱法和其他方法的测定值相符。本文方法扩大了基体的适应性,提高了实际应用价值。
  • 加载中
  • 表 1  各分析元素的测量条件

    Table 1.  Measurement parameters of elements by XRF

    元素分析线晶体准直器
    (μm)
    探测器电压
    (kV)
    电流
    (mA)
    2θ
    (°)
    背景
    (°)
    PHD范围
    CuKαLiF 200150Flow606045.00980.7506-20~66
    ZnKαLiF 200150Scint606041.75920.8550-15~78
    Pb1LiF 200150Scint606028.21760.9272-21~78
    CoKαLiF 200150Flow606052.77240.8384-16~67
    MoKαLiF 200150Scint606020.25980.6332-25~78
    BiLβLiF 200150Scint606032.96940.5986-19~78
    SbKαLiF200150Scint606013.44860.2812-29~69
    NiKαLiF200300Flow606048.66140.8022-18~66
    SiKαPE 002300Flow25144109.10282.1706-24~78
    AlKαPE 002300Flow25144144.8902-1.6524-22~78
    FeKαLiF 200150Flow606057.5136-0.7198-15~68
    TiKαLiF 200150Flow409086.14440.591-25~71
    MnKαLiF 200150Flow606062.97020.636-25~68
    KKαLiF 200300Flow25144136.698-1.0938-25~74
    CaKαLiF 200150Flow30120113.109 1.7412-25~73
    MgKαPX1300Flow2514422.9698 2.0386-1.506025~66
    NaKαPX1300Flow2514427.8904 1.9338-1.889225~65
    RhKαcLiF 200150Scint606018.4294--25~78
    下载: 导出CSV

    表 2  各元素校准曲线范围

    Table 2.  Concentration range of elements in the calibration curve

    元素含量(%)
    Cu0.01~12.79
    Pb0.019~4.17
    Zn0.01~4.26
    SiO29.27~82.95
    Al2O31.73~15.18
    TFe2O33.50~55.58
    TiO20.017~0.53
    MnO0.026~2.21
    CaO1.52~28.86
    MgO0.082~28.40
    K2O0.021~3.85
    Mo60~15100
    Bi70~2830
    Co40~1500
    Sb80~6800
    Ni40~7970
    注:Mo、Bi、Co、Sb、Ni元素的含量范围最低限为检出限。
    下载: 导出CSV

    表 3  Cu、Pb、Zn校准曲线的计算值与标准值对比

    Table 3.  Comparison of calculated values and proposed values four Cu, Pb, Zn in calibration curves

    标准物质编号CuPbZn
    标准值
    (%)
    校准曲线计算值
    (%)
    标准值
    (%)
    校准曲线计算值
    (%)
    标准值
    (%)
    校准曲线计算值
    (%)
    GBW 071620.260.250.430.420.830.84
    GBW 071642.802.820.0560.060.140.14
    GBW 071695.495.511.121.120.610.60
    GBW 071970.620.62<0.02-0.0780.080
    GBW 071980.110.11<0.02-0.0450.050
    GBW 072331.151.15<0.02-0.060.06
    GBW 072340.190.19<0.02-0.0130.014
    GBW 072350.200.204.174.200.060.06
    GBW 072370.710.710.250.242.752.54
    GBW 072380.010.01<0.02-<0.01-
    ZBK3356.786.760.110.110.450.45
    ZBK33612.7712.780.040.040.640.63
    ZBK33710.7110.720.020.020.050.05
    ZBK3398.468.440.090.090.500.50
    YSS023-20042.332.311.761.801.941.94
    GBW(E) 0700680.300.291.611.630.220.22
    GBW(E) 0700690.120.120.610.610.100.10
    GBW(E) 0700700.190.19<0.02-<0.01-
    GBW(E) 0700710.500.490.020.02<0.01-
    GBW(E) 0700720.680.68<0.02-0.0110.011
    GBW(E) 0700730.290.29<0.02-0.010.01
    GBW(E) 0700740.900.89<0.02-0.020.02
    GBW(E) 0700753.843.850.0240.020.0830.08
    GBW(E) 0700768.538.520.0270.020.190.19
    下载: 导出CSV

    表 4  滴加不同滴数饱和LiBr溶液对铜测定结果的影响

    Table 4.  Effect of different drops for saturated LiBr solution on analytical results of Cu

    标准物质编号Cu的标准值
    (%)
    Cu的测定值(%)
    2滴4滴6滴8滴10滴12滴
    GBW(E) 0700710.500.500.490.500.480.460.45
    GBW(E) 0700753.84裂纹3.833.823.803.763.72
    ZBK3398.46爆裂8.378.448.418.408.32
    下载: 导出CSV

    表 5  方法检出限

    Table 5.  Detection limits of the method

    元素方法检出限
    (μg/g)
    Cu100
    Pb200
    Zn100
    SiO2200
    Al2O3330
    TFe2O3200
    TiO280
    MnO100
    CaO240
    MgO100
    K2O160
    Sb80
    Mo60
    Bi70
    Co40
    Ni40
    下载: 导出CSV

    表 6  方法精密度

    Table 6.  Precision tests of the method

    元素GBW 07164GBW 07169
    含量(%)RSD(%)含量(%)RSD(%)
    Cu2.780.35.500.3
    Pb0.0550.41.10 0.3
    Zn0.140.10.620.5
    SiO240.52.548.03.8
    Al2O37.771.111.41.8
    TFe2O316.23.413.15.4
    MnO0.300.30.140.1
    CaO17.10.84.601.3
    MgO2.331.40.802.6
    K2O1.761.01.421.1
    TiO20.370.11.120.1
    Mo*1401.7--
    Bi*82.02.515201.4
    Co*80.00.81181.9
    Ni*--2180.5
    Sb*1001.567912.6
    注:带*的数据单位为μg/g。
    下载: 导出CSV

    表 7  标准物质分析结果

    Table 7.  Analytical results of reference materials

    元素GBW 07163GBW 07170
    标准值
    (%)
    测定值
    (%)
    标准值
    (%)
    测定值
    (%)
    Cu1.051.0412.5912.62
    Pb2.172.152.242.20
    Zn4.264.241.211.20
    SiO247.947.823.1223.20
    Al2O311.211.24.644.59
    TFe2O312.012.112.7612.60
    MnO0.490.480.140.14
    CaO4.704.6824.4924.31
    MgO1.391.362.482.52
    K2O3.103.070.0210.022
    TiO2-0.540.210.21
    Bi*7577607638
    Ni*-<40376352
    Sb*6106301250011800
    Co*-44221209
    Mo*24<60-<60
    注:带*的数据单位为μg/g。
    下载: 导出CSV

    表 8  实际样品不同分析方法结果对照

    Table 8.  Analytical results of elements in real copper samples by different methods

    元素样品1样品2样品3样品4
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    XRF
    (%)
    ICP-AES
    (%)
    Cu3.203.181.361.380.580.601.171.20
    Pb0.470.470.090.090.030.040.110.11
    Zn1.121.150.760.760.240.220.180.17
    Bi0.0770.0750.110.100.0260.0240.0100.011
    Ni0.0140.0140.0080.0080.0760.0810.0500.053
    Sb0.040.040.060.06<0.0080.0030.00840.010
    Mo0.130.12*0.600.62*0.0060.005*<0.0060.005*
    Co0.150.140.0840.0860.090.100.050.05
    注:Mo元素带“*”数据是分光光度法的测定值。
    下载: 导出CSV
  • [1]

    谢琼心.X射线荧光光谱分析法测定多金属矿中的铅锌铜[J].分析试验室,1997,16(5):74-76. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY705.020.htm

    [2]

    李国会.X射线荧光光谱分析法测定铬铁矿中主次量主分[J].岩矿测试,1999,18(2):131-134.

    [3]

    田琼,黄健,钟志光,陈广文,曲强,洪武兴.波长色散X射线荧光光谱法测定铜精矿中铜铅锌硫镁砷[J].岩矿测试,2009,28(4):382-384. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200904020.htm

    [4]

    赵耀,王再田.XRF熔融制样法测定铜精矿中的Cu、Fe、S、Pb、Zn、As、Bi、Mo [J].分析试验室,1999,18(1):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY901.005.htm

    [5]

    才书林,郭玉林,王颜红.X射线荧光光谱法在有色金属矿石标准定值分析中的应用[J].岩矿测试,1992,11(3):260-264. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199203019.htm

    [6]

    李小莉,唐力君,黄进初.X射线荧光光谱熔融片法测定铜矿中主次元素[J].冶金分析,2012,32(7):67-70. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201207016.htm

    [7]

    曹慧君,张爱芬,马慧侠,李晓宁,徐祥斌.X射线荧光光谱法测定铜矿中主次成分[J].冶金分析,2010,30(10):20-24. doi: 10.3969/j.issn.1000-7571.2010.10.005

    [8]

    岩石矿物分析编委会.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社,2011:17-18,42-44.

    [9]

    Claisse F, Blanchette J S. Physics and Chemistry of Borate Fusion[M].Canada:Fernand Claisse Incorporated,2004:32-84.

    [10]

    吉昂,陶光仪,卓尚君,罗立强.X射线荧光光谱仪分析[M].北京:科学出版社,2003:111-133,184-235.

    [11]

    罗立强,詹秀春,李国会.X射线荧光光谱仪[M].北京:化学工业出版社,2008:71-90.

    [12]

    硫化物矿物标准研制小组.硫化物矿物标准的研制[J].岩矿测试,1995,14(2):81-112. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS502.000.htm

    [13]

    夏鹏超,李明礼,王祝,李代琼,胡亚燕.粉末压片制样-波长色散X射线荧光光谱法测定斑岩型钼铜矿中主次量元素钼铜铅锌砷镍硫[J].岩矿测试,2012,31(3):468-472. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201203018.htm

    [14]

    张勤,樊守忠,潘宴山,李国会.X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分[J].岩矿测试,2004,23(1):19-24. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200401005.htm

  • 加载中

(8)

计量
  • 文章访问数:  974
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2013-07-15
录用日期:  2013-10-21

目录