A Review of the Isotope System of Cadmium and Its Applications in Geosciences and Environmental Sciences
-
摘要: 镉是典型的亲硫元素,常赋存于各种硫化物矿床中。在环境体系中,镉是微生物所需的营养物质,其元素的循环受生物活动的影响。已有研究表明蒸发/冷凝过程、生物及无机过程都会导致镉同位素发生分馏,因此镉同位素研究在地球科学、环境科学具有独特的应用前景。与此同时,多接收器电感耦合等离子体质谱(MC-ICP-MS)技术的应用成功地实现了地质样品中镉同位素组成的高精度测量,使得镉同位素地球化学研究获得了蓬勃发展。本文基于当前最新研究成果,对镉同位素体系进行了详细综述,重点探讨镉的地球化学行为及同位素分馏机制,镉同位素在各物质储库中的分布特征,镉同位素测试技术及其在地球科学、环境科学中的应用。镉同位素地球化学的研究尚处于起步阶段,深入开展镉同位素分馏机理、完善镉同位素在各物质储库中的分布、建立统一的同位素标准体系的研究,将推动镉同位素在地球科学和环境科学领域的广泛应用。Abstract: Cadmium is a typical chalcophile element which occurs in various sulfide deposits. In the environmental system, cadmium as the nutritional requirement is utilized for the growth of microorganisms, and its cycle is greatly affected by the biological process. Several recent publications have shown that mass differences between Cd isotopes result in isotopic fractionation during the evaporation/condensation processes, biological and inorganic processes. These results demonstrate that Cd isotopes can be used as a tracer in geosciences and environmental sciences. The Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) has successfully been used for high-precision measurements of cadmium isotopic compositions in the geological samples, which makes a rapid advance in the geochemical research of the cadmium isotope. In this paper, based on current publications, a review of the cadmium isotopic system is provided in detail, with emphasis on the geochemical behaviour of cadmium and its isotope fractionation mechanism, the distribution characteristics in the natural reservoirs, analytical technique and the applications in the geosciences and environmental sciences. The geochemical research of the cadmium isotope is just in its infancy; conducting an investigation into the cadmium isotope fractionation mechanism, the distribution characteristics in natural reservoirs and a unified cadmium isotope standard calibration system could promote the application of the cadmium isotope in geosciences and environmental sciences.
-
Key words:
- cadmium /
- isotope /
- geosciences /
- environmental sciences
-
-
图 1 太平洋中海水深度与溶解态镉和磷酸盐含量的关系(数据来自文献[5])
Figure 1.
图 2 采用模拟海水培育浮游植物中不同物相的镉同位素值εCd/amu (数据来自文献[17])
Figure 2.
图 4 (a)各大洋海水样品的镉同位素值ε(114Cd/110Cd)与海水深度对应图;(b)北太平洋St7剖面海水样品中镉浓度与镉同位素值ε(114Cd/110Cd)的关系图(数据来自文献[18])
Figure 4.
图 5 (a)南极洋各海域表层海水中磷酸盐、溶解镉及Si*的分布图; (b)南极洋各海域表层海水样品中镉浓度与镉同位素值ε(112Cd/110Cd)关系图(数据来自文献[23])
Figure 5.
表 1 不同实验室及分析测试技术所获得的各类隔同位素标准物质的镉同位素值ε(114Cd/110Cd)
Table 1. Summary of Cd isotopic ratios ε(114Cd/110Cd) obtained for various internal calibration standards by different laboratories and analytical techniques
校正方法(所使用仪器) BAM-I012 Cd Cd Münster Alfa Cd Zürich MPI JMC Cd Nancy Spex Cd 数据来源 Ag-n (MC-ICP-MS) -10.8±1.5 +46.5±0.5 - - - [28] SSB (MC-ICP-MS) - +44.3±0.4 - - -0.5±1.2 [29] Ag-n (MC-ICP-MS) - +44.3±2.0 - - - [17] DS (MC-ICP-MS) -12.4±1.1 +46.4±1.2 0.0±0.5 - - [30] Ag-n (MC-ICP-MS) -11.4±1.5 +46.0±1.5 - - - [30] DS (TIMS) -12.3±0.3 +44.8±0.2 - +2.2±0.2 0.0±0.4 [21, 31] SSB (MC-ICP-MS) -12.0±1.2 +45.9±1.2 - - +0.1±1.2 [32] Ag-n (MC-ICP-MS) -13.7±2.5 +45.0±0.3 - - - [33] DS (MC-ICP-MS) - - +0.5±0.4 +2.6±0.4 - [24] 注:校正标准溶液为JMC Cd Münster。校正方法:Ag-n为Ag外标法,SSB为标准-样品法,DS为双稀释法。仪器TIMS为热电离质谱仪。 表 2 不同实验室测试镉同位素标准溶液的重现性
Table 2. Reproducibility of Cd isotope standard solutions measured by various laboratories
校正方法 测量仪器 2σ(εCd/amu) 文献来源 常规方法 TIMS 8~16 [22, 36] 106Cd-111Cd TIMS ≤4 [36] SSB MC-ICP-MS 1.0~1.5 [14] Ag-,Sb-n MC-ICP-MS 0.2~0.8 [19] SSB MC-ICP-MS 0.1~0.5 [29] 106Cd-111Cd TIMS 2 [11] Ag-n MC-ICP-MS 0.1~0.5 [17] Ag-n MC-ICP-MS 0.4 [30] 110Cd-111Cd MC-ICP-MS 0.2~0.3 [30] SSB MC-ICP-MS 0.2~0.3 [32] 106Cd-108Cd TIMS 0.07 [31] Ag-n MC-ICP-MS 0.2~0.8 [33] 111Cd-113Cd MC-ICP-MS 0.2~0.3 [24] 注: 表中所有的重现性都是基于多次测量纯镉标准溶液得到的2σ值,并统一依照文献[31]中的εCd/amu来表达。 -
[1] Moynier F, B1ichert T J, Telouk P, Luck J M, Albarède F. Comparative stable isotope geochemistry of Ni, Cu, Zn and Fe in chondrites and iron meteorites [J]. Geochimica et Cosmochimiea Acta, 2007, 71: 4365-4379. doi: 10.1016/j.gca.2007.06.049
[2] Wille M, Kramers J D, Nägler T F, Beukes N J, Schröder S, Lacassie T M J P, Voegelin A R. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales [J]. Geochimica et Cosmochimia Acta, 2007, 71: 2417-2435. doi: 10.1016/j.gca.2007.02.019
[3] Larson P B, Maher K, Ramos F C, Chang Z S, Gaspar M, Meinert L D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments [J].Chemical Geology, 2003, 201: 337-350. doi: 10.1016/j.chemgeo.2003.08.006
[4] Beard B L, Johnson C M, Skulan J L, Nealson K H, Cox L, Sun H. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe [J].Chemical Geology, 2003, 195: 87-117. doi: 10.1016/S0009-2541(02)00390-X
[5] Boyle E A, Sclater F, Edmond J M. On the marine geochemistry of cadmium [J].Nature,1976,263: 42-44. doi: 10.1038/263042a0
[6] Bruland K W. Oceanographic distributions of cadmium, zinc, nickel and copper in the North Pacific [J]. Earth and Planetary Science Letters, 1980, 47: 176-198. doi: 10.1016/0012-821X(80)90035-7
[7] Rosenthal Y, Boyle E A, Labeyrie L, Oppo D. Glacial enrichments of authigenic Cd and U in subantarctic sediments: A climatic control on the elements′ oceanic budget ? [J]. Paleoceanography, 1995, 10(3): 395-413. doi: 10.1029/95PA00310
[8] Martin J M, Thomas A J. The global insignificance of telluric input of dissolved trace metals (Cd, Cu, Ni and Zn) to ocean margins [J]. Marine Chemistry, 1994, 46: 165-178. doi: 10.1016/0304-4203(94)90053-1
[9] Van G A, Mc Corkle D C, Klinkhammer G P. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments [J]. Paleoceanography, 1995, 10: 159-169. doi: 10.1029/94PA03352
[10] German C R, Campbell A C, Edmond J M. Hydrothermal scavenging at the Mid-Atlantic Ridge: Modification of trace element dissolved fluxes [J]. Earth and Planetary Science Letters, 1991, 107(1): 101-114. doi: 10.1016/0012-821X(91)90047-L
[11] Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material [J]. Earth and Planetary Science Letters, 2006, 243: 326-335. doi: 10.1016/j.epsl.2006.01.007
[12] Sands D G, de Laeter J R, Rosman K J R. Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for neutron energy spectrum [J]. Earth and Planetary Science Letters, 2001, 186: 335-346. doi: 10.1016/S0012-821X(01)00231-X
[13] Wombacher F, Rehkämper M, Mezger K, Bischoff A, Münker C. Cadmium stable isotope cosmochemistry [J]. Geochimica et Cosmochimica Acta, 2008, 72: 646-667. doi: 10.1016/j.gca.2007.10.024
[14] Wombacher F, Rehkämper M, Mezger K. Determina-tion of the mass-dependence of cadmium isotope fractionation during evaporation [J]. Geochimica et Cosmochimica Acta, 2004, 68: 2349-2357. doi: 10.1016/j.gca.2003.12.013
[15] Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E. Tracing source pollution in soils using cadmium and lead isotopes [J]. Environmental Science & Technology, 2006, 40(8): 2525-2530.
[16] Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining [J]. Science of the Total Environment, 2010, 408: 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016
[17] Lacan F, Francois R, Ji Y C, Sherrell R M. Cadmium isotopic composition in the ocean [J]. Geochimica et Cosmochimia Acta, 2006, 70(20): 5104-5118. doi: 10.1016/j.gca.2006.07.036
[18] Ripperger S, Rehkämper M, Porcelli D, Halliday A N. Cadmium isotope fractionation in seawater—A signature of biological activity [J]. Earth and Planetary Science Letters, 2007, 261: 670-684. doi: 10.1016/j.epsl.2007.07.034
[19] Wombacher F, Rehkämper M, Mezger K, Münker C. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICP-MS [J]. Geochimica et Cosmochimia Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2
[20] Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite [J]. Earth and Planetary Science Letters, 2011, 312: 243-253. doi: 10.1016/j.epsl.2011.10.004
[21] Schmitt A D, Galer S J G, Abouchami W. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment [J]. Earth and Planetary Science Letters, 2009, 277: 262-272. doi: 10.1016/j.epsl.2008.10.025
[22] Rosman K J R, de Laeter J R.The isotopic composition of cadmium in terrestrial minerals [J]. Journal of Mass Spectrometry and Ion Physics, 1975, 16: 385-394. doi: 10.1016/0020-7381(75)85027-3
[23] Abouchami W, Galer S J G, de Baar H J W, Alderkamp A C, Middag R, Laan P H F, Andreae M O.Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity [J]. Earth and Planetary Science Letters, 2011, 305: 83-91. doi: 10.1016/j.epsl.2011.02.044
[24] Horner T J, Schönbächler M, Rehkämper M, Nielsen S G, Williams H, Halliday A N, Xue Z, Hein J R. Ferromanganese crusts as archives of deep water Cd isotope compositions. Geochemistry Geophysics Geosystems, 2010, 11:Q04001. doi:10.1029/2009GC002987.
[25] Gao B, Liu Y, Sun K, Liang X R, Peng P A, Sheng G Y, Fu J M. Precise determination of cadmium and lead isotopic compositions in river sediments [J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
[26] Shiel A E, Weis D, Orians K J. Tracing cadmium, zinc and lead sources in bivalves from the coasts of western Canada and the USA using isotopes [J]. Geochimica et Cosmochimica Acta, 2012, 76: 175-190. doi: 10.1016/j.gca.2011.10.005
[27] Abouchami W, Rehkämper M, Galer S J G, Horner T J, Xue Z, Henderson G M, Wombacher F, Schonbachler M, Gault-Ringold M, Storling C. In Search of a Common Reference Material for Cadmium Isotope Studies [C]//Proceedings of Goldschmidt Conference. USA: Knoxville, 2010: A2.
[28] Wombacher F, Rehkämper M. Problems and suggestions concerning the notation of Cd stable isotope compositions and the use of reference materials [J]. Geostandards and Geoanalytical Research, 2004, 28(1): 173-178. doi: 10.1111/ggr.2004.28.issue-1
[29] Cloquet C, Rouxel O, Carignan J, Libourel G. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropo-genic samples, measured by MC-ICP-MS [J]. Geostandards and Geoanalytical Research,2005,29(1): 95-106. doi: 10.1111/ggr.2005.29.issue-1
[30] Ripperger S, Rehkämper M. Precise determination of cadmium isotope fractionation in seawater by double-spike MC-ICP-MS [J]. Geochimica et Cosmochimia Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005
[31] Schmitt A D, Galer S J G, Abouchami W. High-precision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry [J]. Journal of Analytical Atomic Spectrometry, 2009, 24: 1079-1088. doi: 10.1039/b821576f
[32] Gao B, Liu Y, Sun K, Liang X R, Peng P A, Sheng G Y, Fu J M. Precise determination of cadmium and lead isotopic compositions in river sediments [J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020
[33] Shiel A E, Barling J, Orians K J, Dominique W. Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios [J]. Analytica Chimica Acta, 2009, 633(1): 29-37. doi: 10.1016/j.aca.2008.11.026
[34] de Baar H J W, Saager P M, Nolting R F, de Meer J V. Cadmium versus phosphate in the world ocean [J]. Marine Chemistry, 1994, 46(3): 261-281. doi: 10.1016/0304-4203(94)90082-5
[35] 张羽旭,温汉捷,樊海峰,王加昇,张锦让.Cd同位素地质样品的预处理方法研究[J].分析测试学报, 2010, 29: 633-637.
[36] Rosman K J R, de Laeter J R. A survey of cadmium isotopic abundances [J]. Journal of Geophysical Research Solid Earth, 1978, 83: 1279-1287. doi: 10.1029/JB083iB03p01279
[37] Manhès G, Göpel C. Mass-independant fractionation during TIMS measurements: Evidence of nuclear shift effects ? [J]. Geochimica et Cosmochimia Acta, 2007, 71: A618.
[38] Anbar A D. Molybdenum stable isotopes: Observations, interprerations and directions [J]. Reviews in Mineralogy and Geochemistry, 2004, 55: 429-454. doi: 10.2138/gsrmg.55.1.429
-