中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

天然有机质存在条件下的纳米颗粒与重金属协同行为研究

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究[J]. 岩矿测试, 2013, 32(5): 669-680.
引用本文: 胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究[J]. 岩矿测试, 2013, 32(5): 669-680.
Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.
Citation: Jun-dong HU, Wei LIU, Ya-ting SHEN, Guo-hui LU Guo-hui. Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment[J]. Rock and Mineral Analysis, 2013, 32(5): 669-680.

天然有机质存在条件下的纳米颗粒与重金属协同行为研究

  • 基金项目:
    国家自然科学基金青年基金资助项目(41201512);中国地质调查局地质调查工作项目(1212011120277)
详细信息
    作者简介: 胡俊栋,博士,助理研究员,环境地球化学专业,主要从事纳米环境学和生态地球化学领域研究。E-mail:hujundong@cags.ac.cn
  • 中图分类号: X820.4

Review on the Co-behavior of Nanoparticles and Heavy Metals in the Presence of Natural Organic Matter in the Natural Environment

  • 纳米颗粒与重金属元素相结合发生反应,可能产生一系列相互作用关系。这些作用过程是取决于多个环境条件共同作用的复杂过程,尤其是在土壤这种复杂的典型非均质环境介质中。这些作用关系可分为协同促进和拮抗抑制两大类关系。对于土壤中的重金属元素离子而言,纳米态粒子对其环境有效性究竟是协同促进还是拮抗抑制作用,关键取决于纳米粒子的表面修饰特性、二者间的界面反应以及反应后重金属元素的最终赋存状态这三个方面。协同促进或拮抗抑制作用与否则最终决定了这些污染重金属离子的生物可利用性和生态毒性响应。本文对近年来纳米颗粒-重金属共环境行为国内外研究现状进行综述讨论。纳米-重金属界面吸附解吸和土壤中迁移持留过程研究涉及多个热力学、动力学解析方法,科学家结合静态批实验和动态迁移实验等实验室模拟手段,对纳米颗粒、重金属离子、有机质三因子在土壤介质中的相互作用影响和共行为方式展开深入探讨。在重金属离子-纳米颗粒表面吸附机制、赋存形态以及重金属纳米吸附态土壤迁移固定机制研究中,多种定性表征方法的综合应用,如透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、X射线吸收近边结构光谱/扩展X射线吸收精细结构光谱(XANES/EXAFS)等方法相结合,被公认是揭示这一系列过程机制的重要技术手段。针对不同土壤环境中有机质存在条件,正确评价纳米态物质对重金属的迁移性及生物可利用性的影响作用,将为纳米环境效应评估和纳米修复技术等相关应用提供重要的数据支持和机理依据。
  • 加载中
  • 图 1  ((A)零价铁纳米颗粒TEM图像[8],(B)零价铁纳米颗粒SEM图像(250 nm比例尺)[8],(C)Fe3O4磁纳米颗粒TEM图像(100 nm比例尺)[9],(D)氧化铁纳米颗粒TEM图像[10]

    Figure 1. 

    图 2  进入环境中的纳米颗粒可能发生的自环境行为、与共存天然有机质和污染物的共环境行为以及可能产生的环境效应示意图[13]

    Figure 2. 

    图 3  AFM观测的2 μg/g胡敏酸悬液中胡敏酸大分子团聚颗粒的实际存在状态(5 mmol/L NaCl,pH=6.7),上图为AFM Deflection error模式,下图为AFM Friction模式[18]

    Figure 3. 

    图 4  TEM观察镜像:(a)纯净三氧化二铁纳米颗粒,(b)pH=6.5条件下表面吸附Cu后的三氧化二铁纳米颗粒,(c)pH=8.5条件下表面吸附Ni后的三氧化二铁纳米颗粒[25]

    Figure 4. 

    图 5  零价铁纳米颗粒对Cr的表面固定及反应过程示意简图[8]

    Figure 5. 

    图 6  氧化铁纳米颗粒的FTIR图谱对比:(a)表面吸附As(Ⅲ)之前,(b)表面吸附As(Ⅲ)之后[10]

    Figure 6. 

    图 7  (a)硒化钠(Na2Se)和元素硒(Se0)标准物质的XANES图谱对合成硒化亚铁(FeSe)图谱数据进行最小二乘法拟合的结果;(b)硒化钠(Na2Se)和合成硒化亚铁(FeSe)图谱对Se(Ⅵ)吸附后的零价铁纳米颗粒数据进行拟合的结果[29]

    Figure 7. 

    图 8  填充柱迁移实验装置示意图:(a)饱和水条件装置,(b)非饱和(部分饱和)水条件装置[35]

    Figure 8. 

    图 9  (a)水悬液中溶解性胡敏酸大分子与单个及2~3个Fe2O3纳米颗粒团聚体间吸附状态的AFM影像图[37];(b)胡敏酸大分子与Al2O3纳米颗粒间的吸附反应过程示意图(pH=4)[38]

    Figure 9. 

  • [1]

    Farre M, Sanchis J, Barcelo D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment [J].Trac-Trends in Analytical Chemistry, 2011, 30(3): 517-527. doi: 10.1016/j.trac.2010.11.014

    [2]

    Subcommitte on Nanoscale Science Engineering and Technology, National Scicence and Technology Council Committee on Technology. National Nanotechnology Initiative Strategic Plan [R].USA,2011.

    [3]

    Majewski P, Thierry B.Functionalized magnetite nanoparticles-Synthesis, properties, and bio-applications [J].Critical Reviews in Solid State and Materials Sciences, 2007, 32(3-4):203-215.

    [4]

    Wei X C, Viadero R C.Synthesis of magnetite nanoparticles with ferric iron recovered from acid mine drainage: Implications for environmental engineering [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects, 2007, 294(1-3):280-286.

    [5]

    Zhang Q A, Thompson M S, Carmichael-Baranauskas A Y, Caba B L, Zalich M A, Lin Y N, Mefford O T, Davis R M, Riffle J S. Aqueous dispersions of magnetite nanoparticles complexed with copolyether dispersants: Experiments and theory [J].Langmuir, 2007, 23(13): 6927-6936. doi: 10.1021/la070116+

    [6]

    Hu J H, Johnston K P, Williams R O. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs [J].Drug Development and Industrial Pharmacy, 2004, 30(3): 233-245. doi: 10.1081/DDC-120030422

    [7]

    Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J].Dyes and Pigments, 2004, 61(1): 93-98. doi: 10.1016/j.dyepig.2003.10.008

    [8]

    Li X Q, Cao J S, Zhang W X. Stoichiometry of Cr(Ⅵ) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) [J].Industrial & Engineering Chemistry Research, 2008, 47(7): 2131-2139.

    [9]

    Hu J D, Zevi Y, Kou X M, Xiao J, Wang X J, Jin Y. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions [J].Science of the Total Environment, 2010, 408(16): 3477-3489. doi: 10.1016/j.scitotenv.2010.03.033

    [10]

    De D, Mandal S, Bhattacharya J, Ram S, Roy S. Iron oxide nanoparticle-assisted arsenic removal from aqueous system [J].Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(2): 155-162.

    [11]

    Liu R Q, Zhao D Y. Reducing leachability and bioacce-ssibilty of lead in soils using a new class of stabilized iron phosphate nanoparticles [J].Water Research, 2007, 41(12): 2491-2502. doi: 10.1016/j.watres.2007.03.026

    [12]

    Liang P, Qin Y C, Hu B, Li C X, Peng T Y, Jiang Z C. Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES [J].Fresenius Journal of Analytical Chemistry, 2000, 368(6): 638-640. doi: 10.1007/s002160000546

    [13]

    Christian P, Von der Kammer F, Baalousha M, Hofmann T. Nanoparticles: Structure, properties, preparation and behaviour in environmental media [J].Ecotoxicology, 2008, 17(5): 326-343. doi: 10.1007/s10646-008-0213-1

    [14]

    Hiemstra T, Antelo J, Rahnemaie R, van Riemsdijk W H. Nanoparticles in natural systems Ⅰ: The effective reactive surface area of the natural oxide fraction in field samples [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 41-58. doi: 10.1016/j.gca.2009.10.018

    [15]

    Gilbert B, Ono R K, Ching K A, Kim C S. The effects of nanoparticle aggregation processes on aggregate structure and metal uptake [J].Journal of Colloid and Interface Science, 2009, 339(2): 285-295. doi: 10.1016/j.jcis.2009.07.058

    [16]

    Hiemstra T, Antelo J, van Rotterdam A M D, van Riemsdijk W H. Nanoparticles in natural systems Ⅱ: The natural oxide fraction at interaction with natural organic matter and phosphate [J].Geochimica et Cosmochimica Acta, 2010, 74(1): 59-69. doi: 10.1016/j.gca.2009.10.019

    [17]

    Tombacz E. Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions [J].Soil Science,1999, 164(11): 814-824. doi: 10.1097/00010694-199911000-00005

    [18]

    胡俊栋.四氧化三铁纳米颗粒的稳定性及其在饱和多孔介质中的迁移持留行为[D].北京:北京大学,2010.

    [19]

    王萌,陈世宝,李娜,马义兵.纳米材料在污染土壤修复及污水净化中应用前景探讨[J].中国生态农业学报, 2010, 18(4): 434-439. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201002042.htm

    [20]

    Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: Behavior and XPS study [J].Journal of Colloid and Interface Science,2012, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070

    [21]

    Sharma Y C, Srivastava V, Weng C H, Upadhyay S N. Removal of Cr(Ⅵ) from wasterwater by adsorption on iron nanoparticles [J].Canadian Journal of Chemical Engineering,2009, 87(6): 921-929. doi: 10.1002/cjce.v87:6

    [22]

    Hu J, Chen G H, Lo I M C. Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles [J].Water Research,2005, 39(18): 4528-4536. doi: 10.1016/j.watres.2005.05.051

    [23]

    Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching [J].Chemosphere,2011, 82(8): 1178-1184. doi: 10.1016/j.chemosphere.2010.11.075

    [24]

    Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J.Adsorption of As(Ⅴ) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy [J].Colloids and Surfaces A—Physicochemical and Engineering Aspects,2009,346(1-3): 106-113.

    [25]

    Hu J, Chen G H, Lo I M C.Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms [J].Journal of Environmental Engineering,2006, 132(7): 709-715. doi: 10.1061/(ASCE)0733-9372(2006)132:7(709)

    [26]

    Nishio K, Gokon N, Tsubouchi S, Ikeda M, Narimatsu H, Sakamoto S, Izumi Y, Abe M, Handa H. Direct detection of redox reactions of sulfur-containing compounds on ferrite nanoparticle (FP) surface [J].Chemistry Letters,2006, 35(8): 974-975. doi: 10.1246/cl.2006.974

    [27]

    Lin K S, Chang N B, Chuang T D. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater [J].Science and Technology of Advanced Materials,2008,9(2):doi:10. 1088/1468-6996/9/2/025015.

    [28]

    Zhou J G, Fang H T, Hu Y F, Sham T K, Wu C X, Liu M, Li F. Immobilization of RuO2 on carbon nanotube: An X-ray absorption near-edge structure study [J].Journal of Physical Chemistry C,2009, 113(24): 10747-10750. doi: 10.1021/jp902871b

    [29]

    Olegario J T, Yee N, Miller M, Sczepaniak J, Manning B. Reduction of Se(Ⅵ) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J].Journal of Nanoparticle Research,2010, 12(6): 2057-2068. doi: 10.1007/s11051-009-9764-1

    [30]

    Pelley A J, Tufenkji N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media [J].Journal of Colloid and Interface Science,2008, 321(1): 74-83. doi: 10.1016/j.jcis.2008.01.046

    [31]

    Zhang M Y, Wang Y, Zhao D Y, Pan G. Immobi-lization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), magnetite (Fe3O4) particles [J].Chinese Science Bulletin,2010, 55(4-5): 365-372. doi: 10.1007/s11434-009-0703-4

    [32]

    Manzoori J L, Amjadi M, Hallaj T. Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry [J].International Journal of Environmental Analytical Chemistry,2009, 89(8-12): 749-758. doi: 10.1080/03067310902736955

    [33]

    Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts J P. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate [J].Environmental Science & Technology,2010, 44(19): 7635-7640.

    [34]

    Xiong Z, He F, Zhao D Y, Barnett M O.Immobi-lization of mercury in sediment using stabilized iron sulfide nanoparticles [J].Water Research,2009, 43(20): 5171-5179. doi: 10.1016/j.watres.2009.08.018

    [35]

    Jin Y, Chu Y J, Li Y S.Virus removal and transport in saturated and unsaturated sand columns [J].Journal of Contaminant Hydrology,2000, 43(2): 111-128. doi: 10.1016/S0169-7722(00)00084-X

    [36]

    方婧,周艳萍,温蓓.二氧化钛纳米颗粒对铜在土壤中运移的影响[J].土壤学报, 2011, 48(3): 549-556. doi: 10.11766/trxb200912220584

    [37]

    Ghosh S, Jiang W, McClements J D, Xing B S.Colloidal stability of magnetic iron oxide nanoparticles: Influence of natural organic matter and synthetic polyelectrolytes [J].Langmuir,2011, 27(13): 8036-8043. doi: 10.1021/la200772e

    [38]

    Pan B, Xing B S.Applications and implications of manufactured nanoparticles in soils: A review [J].European Journal of Soil Science,2012, 63(4): 437-456. doi: 10.1111/ejss.2012.63.issue-4

    [39]

    Franchi A, O′Melia C R.Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media [J].Environmental Science & Technology,2003, 37(6): 1122-1129.

    [40]

    Uchimiya M, Lima I M, Klasson K T, Wartelle L H. Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter [J].Chemosphere,2010, 80(8): 935-940. doi: 10.1016/j.chemosphere.2010.05.020

  • 加载中

(9)

计量
  • 文章访问数:  1756
  • PDF下载数:  15
  • 施引文献:  0
出版历程
收稿日期:  2013-01-15
录用日期:  2013-01-27

目录