Determination of Au and Pt in Geological Samples by Graphite Furnace Atomic Absorption Spectrometry with Concentrate and Extraction by Foam Plastics and Thiourea
-
摘要: 泡沫塑料常用于富集常规地质样品中的铂族元素,而富集后往往用高温灰化法解脱,此法操作繁琐,温度过高易使铂配合物分解为王水难以提取的不溶性残渣,导致测试结果不稳定、效率低;单独使用20 g/L硫脲溶液解脱,测试结果的重现性差。本文对此方法进行改进,采用50%王水封闭溶解试样,氯化亚锡还原,聚氨酯泡塑富集,20 g/L硫脲-20%盐酸溶液解脱,石墨炉原子吸收光谱法测定金和铂。在盐酸-氯化亚锡体系中,吸附温度为20℃,振荡时间为30 min时,金和铂的回收率均在95%以上,金和铂的检出限分别为0.23 ng/g和0.39 ng/g,精密度(RSD,n=10)分别为1.8%~10.3%和1.3%~13.3%。经国家一级标准物质验证,测定值和标准值基本相符。该方法泡塑解脱时无需高温灰化,用王水多次提取,在100℃沸水浴中即可一次完成,样品处理快捷。与高温灰化法相比,提取温度大为降低,分析流程简单,显著提高了单次测样量,且干扰小、空白值低,可以满足除王水难溶的铂矿种外大部分地质样品快速测定的需要。
-
关键词:
- 地质样品 /
- 金 /
- 铂 /
- 泡塑富集 /
- 石墨炉原子吸收光谱法
Abstract: Extraction by foam plastics is a common method to determine platinum group elements (PGEs) for most geological samples, however, the high temperature ashing method conducted to release Au and Pt, has complex processing. According to the insoluble residues for Pt in aqua regia, produced by the high temperature ashing method, the analysis results are unstable and produce low recovery rates. The unsatisfactory duplicate results were yielded by the sole use of 20 g/L thiourea as the elution solution. In this paper, this method was improved by decomposing the samples in 50% aqua regia in a closed system, reduced by SnCl2 and concentrated by foam plastics then eluted by 20 g/L thiourea solution-20% hydrochloric acid. Au and Pt were continuously determined by Graphite Furnace Atomic Absorption Spectrometry. The adsorption efficiency was stable under the oscillation time and the absorption temperature of 30 min and 20℃, respectively. The recovery rates of Au and Pt were both greater than 95%. The detection limits of the Au and Pt were 0.23 ng/g and 0.39 ng/g with RSD of 1.8%-10.3% and 1.3%-13.3% (n=10), respectively. The method has been verified by determination of national first grade standard material with satisfactory results. The extraction of foam plastics avoided the high-temperature ashing by being extracted several times with aqua regia and one time in 100℃ water bath which greatly simplified the chemical procedure. Compared with high-temperature ashing, the extraction temperature was greatly reduced, the analysis process was simple and the number of samples was significantly increased for each batch with less interferences and low blanks. The improved method met the needs of various testing of geological samples except for the insoluble Pt minerals by aqua regia. -
-
表 1 仪器工作条件
Table 1. Working parameters of the instrument
元素 波长
λ/nm进样量
V/μL干燥 灰化 原子化 除残 θ/℃ t/s θ/℃ t/s θ/℃ t/s θ/℃ t/s Au 242.8 20 120 20 800 15 1900 3 2400 3 Pt 265.9 40 120 30 1200 15 2850 3 2950 3 表 2 正交试验因素
Table 2. The factors of orthogonal experimental
水平 振荡时间(因素A)
t/min吸附温度(因素B)
θ/℃1 20 10 2 30 20 3 40 30 表 3 解脱方法对金铂回收率的影响
Table 3. Effect of desorption method on the recovery of Au and Pt
解脱方法 解脱条件 回收率/% 温度θ/℃ 时间t/min Au Pt 高温灰化 600 40 95.7 95.0 2 g/L硫脲-2%盐酸溶液 100 30 97.3 96.2 2 g/L硫脲溶液 100 30 93.3 90.8 表 4 方法准确度和精密度
Table 4. Accuracy and precision tests of the method
标准物质
编号w(Au)/(ng·g-1) 相对偏差/% RSD/% w(Pt)/(ng·g-1) 相对偏差/% RSD/% 标准值 测量值 校正值 标准值 测量值 校正值 GBW 07288 0.9 0.87 0.88 12.7 2.1 0.26 0.24 0.23 11.5 13.3 GBW 07289 10 9.78 9.76 -2.40 10.3 1.6 1.52 1.51 5.62 2.5 GBW 07290 1.1 1.26 1.24 11.7 9.3 6.4 6.45 6.43 0.47 1.3 GBW 07291 4.3 4.23 4.25 -1.16 2.2 58 56.6 56.8 -2.07 7.4 GBW 07293 45 43.7 43.9 -2.44 1.8 440 416 418 -5.00 4.0 GBW 07294 1.8 2.03 2.01 9.78 5.4 14.7 13.8 13.5 -0.14 1.9 -
[1] 孙文军.二苯硫脲泡塑富集-原子吸收光谱法连续测定化探样品中金和银[J].岩矿测试,2012,31(5): 829-833. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201205015.htm
[2] 贾双琳,况云所.聚氨酯泡沫塑料富集ICP-MS测定化探样品中微量金[J].分析试验室,2010,29(5): 101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY2010S1032.htm
[3] 李小红,储溱,张蕾,丁莹,方金东.泡沫塑料富集-电感耦合等离子体质谱法测定地质样品中痕量金[J].资源环境与工程,2006,20(3): 329-331. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200505007.htm
[4] 孙晓玲,于兆水,张勤.泡沫塑料吸附富集-石墨炉原子吸收光谱法测定地球化学样品中超痕量金[J].岩矿测试,2002,21(4): 266-270. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200204005.htm
[5] 郭玉珍.泡沫塑料富集原子吸收法测定金[J].新疆有色金属,1997(2): 40-42. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ2005Z100U.htm
[6] 张彦斌,程忠洲,李华.硫脲树脂富集-电感耦合等离子体质谱法测定地质样品中的超痕量金、银、铂、钯[J].分析试验室,2006,25(7): 105-108. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200607028.htm
[7] 郑浩,李红,曾扬,马龙.阴离子交换树脂-活性炭动态吸附无火焰原子吸收法测定矿石中的微量金铂钯[J].岩矿测试,2005,24(4): 299-302. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200504013.htm
[8] 来雅文,段太成,甘树才,曹淑琴,郭锦勇,李静.C-410树脂分离富集-电感耦合等离子体质谱法测定地质样品中的金铂、钯[J].分析化学,2002,30(11): 1363-1366. doi: 10.3321/j.issn:0253-3820.2002.11.022
[9] 陈真龙,刘扬中,郑化桂.CL-N263萃淋树脂分离富集金与铂钯的研究[J].冶金分析,1998,18(5): 5-7.
[10] 刘先国,方金东.活性炭吸附-电感耦合等离子体发射光谱法测定化探样品中痕量金铂钯[J].贵金属,2002,23(1): 33-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200201007.htm
[11] 杨仲平,靳晓珠,黄华鸾,韦山桃.TNA负载聚氨酯泡塑富集ICP-MS测定地球化学样品中痕量金铂、钯[J].分析试验室,2006,25(9): 99-102. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200609026.htm
[12] 孟红,云作敏.负载泡沫富集发射光谱法测定化探样品中痕量金铂、钯[J].黄金,2005,26(2): 51-53. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ20050200I.htm
[13] 李承元,李蓉,赵刚,党利坤,丁志,李发刚,补涛,吴琼.负载泡沫塑料富集发射光谱测定化探样品中痕量金铂、钯[J].黄金,2005,26(12): 48-50. doi: 10.3969/j.issn.1001-1277.2005.12.014
[14] 范哲锋,杜黎明,靳晓涛.氧化铝负载二苯基硫脲分离富集ICP-AES测定贵金属的研究[J].光谱学与光谱分析,2003,23(2): 365-367. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200302049.htm
[15] 赖锦秋.负载泡塑富集、发射光谱法测定痕量金铂[J].矿产与地质,1999,13(3): 188-190. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD903.011.htm
[16] 王瑞敏.泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铀钯[J].岩矿测试,2011,30(3): 295-298. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201103016.htm
[17] 林智辉,王英滨,黄文辉.聚氨酯泡沫塑料富集-电感耦合等离子体质谱法测定地质样品中痕量铂和钯[J].理化检验:化学分册,2005,41(5): 321-326. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200505007.htm
[18] 谢娟.泡塑富集分光光度法测定矿石中的铂和钯[J].西北地质,2003,36(1): 105-107. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200301018.htm
[19] 赵平.泡塑富集发射光谱法连测化探样品中超痕量金铂钯[J].光谱学与光谱分析,2001,21(2): 235-236. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200102028.htm
[20] 王继森,刘磊.脂胺泡沫塑料在分析中的应用——AAS测定矿石中微量金铂、钯的研究[J].岩矿测试,1988,5(4): 285-289. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198604008.htm
-