中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

膜萃取与超声衍生联用-负化学源质谱法测定地下水中酚类化合物

李晓亚, 张莉, 桂建业, 张永涛, 张辰凌, 赵国兴, 田来生. 膜萃取与超声衍生联用-负化学源质谱法测定地下水中酚类化合物[J]. 岩矿测试, 2014, 33(2): 270-274.
引用本文: 李晓亚, 张莉, 桂建业, 张永涛, 张辰凌, 赵国兴, 田来生. 膜萃取与超声衍生联用-负化学源质谱法测定地下水中酚类化合物[J]. 岩矿测试, 2014, 33(2): 270-274.
Xiao-ya LI, Li ZHANG, Jian-ye GUI, Yong-tao ZHANG, Chen-ling ZHANG, Guo-xing ZHAO, Lai-sheng TIAN. Determination of Phenols in Groundwater by Solid-Phase Membrane Extraction Combined with Ultrasonic Derivatization-negative Chemical Ionization Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 270-274.
Citation: Xiao-ya LI, Li ZHANG, Jian-ye GUI, Yong-tao ZHANG, Chen-ling ZHANG, Guo-xing ZHAO, Lai-sheng TIAN. Determination of Phenols in Groundwater by Solid-Phase Membrane Extraction Combined with Ultrasonic Derivatization-negative Chemical Ionization Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(2): 270-274.

膜萃取与超声衍生联用-负化学源质谱法测定地下水中酚类化合物

  • 基金项目:
    中国地质科学院水文地质环境地质研究所基本科研业务费项目(SK201204);中国地质调查局项目资助(G201120)
详细信息
    作者简介: 李晓亚,工程师,主要从事地下水有机污染分析。E-mail: lixiaoya0527@126.com
    通讯作者: 张永涛,高级工程师,主要从事水质有机分析。E-mail: icpzytws@126.com
  • 中图分类号: P641; O625.31; O657.63

Determination of Phenols in Groundwater by Solid-Phase Membrane Extraction Combined with Ultrasonic Derivatization-negative Chemical Ionization Mass Spectrometry

More Information
  • 酚类化合物由于极性较大,无法直接用气相色谱-质谱法测定,需要通过衍生来降低其极性,提高检测灵敏度;但是传统的衍生步骤繁琐,干扰因素多,操作难度大。本文对传统的前处理方法进行改进,建立了固相膜萃取、超声衍生负化学源质谱测定地下水中酚类化合物的方法。水样萃取后将萃取膜直接放入衍生瓶中,利用超声波的作用力将洗脱和衍生合二为一,超声完成后将溶液直接上机进行测定。测定低、中、高三个浓度水平的加标样品,各目标物的回收率均能达到70%~90%,检出限在0.25~0.35 μg/L之间,相对标准偏差小于10%,能够满足地下水中酚类物质的检测要求。本方法将洗脱和衍生集于一体,使用2 mL丙酮进行洗脱和衍生就可将全部目标物回收,简化了操作步骤,减少了有机溶剂的使用量;同时由于洗脱和衍生是在密闭的环境中进行,外界因素引入的干扰少,克服了二次污染的问题,测定数据更加可靠。
  • 加载中
  • 表 1  定性定量主要参数

    Table 1.  The main qualitative and quantitative parameters

    化合物保留时间
    (min)
    定量离子
    (m/z)
    参考离子
    (m/z)
    2-甲基苯酚4.83107108
    4-甲基苯酚4.99107108
    2-氯苯酚5.35127128
    4-氯-3-甲基苯酚6.08141142
    2,4-二氯苯酚6.34161163
    2,3,4,6-四氯苯酚8.23231229,233
    下载: 导出CSV

    表 2  酚类化合物在不同萃取膜上的回收率

    Table 2.  Recoveries of phenols with different membranes

    化合物回收率(%)
    C18C8SDB-XC
    2-甲基苯酚7.79.978.9
    4-甲基苯酚14.610.582.5
    2-氯苯酚7.89.183.7
    4-氯-3-甲基苯酚15.763.489.1
    2,4-二氯苯酚9.764.991.2
    2,3,4,6-四氯苯酚25.672.383.4
    下载: 导出CSV

    表 3  超声时间、超声功率和衍生温度对回收率的影响

    Table 3.  Effect of ultrasonic time, power and derivization temperature on recovery

    化合物不同衍生时间下的回收率(%)不同功率下的回收率(%)不同温度下的回收率(%)
    10 min30 min40 min50 min280 W420 W490 W560 W30℃40℃50℃60℃
    2-甲基苯酚32.357.681.379.946.253.365.478.965.271.278.279.5
    4-甲基苯酚25.748.179.481.346.956.672.382.561.369.579.980.1
    2-氯苯酚39.252.778.982.647.361.978.183.767.470.982.781.9
    4-氯-3-甲基苯酚20.947.489.788.235.653.279.489.152.855.488.587.3
    2,4-二氯苯酚34.857.990.889.742.869.178.291.259.962.989.790.2
    2,3,4,6-四氯苯酚32.547.385.981.745.659.772.183.762.773.183.185.3
    下载: 导出CSV

    表 4  碳酸钾的加入量对回收率的影响

    Table 4.  Effect of K2CO3 dosage on recovery

    化合物300 g/L碳酸钾不同
    加入量的回收率(%)
    100 g/L碳酸钾
    加入量为200 μL
    的回收率(%)
    10 μL20 μL30 μL50 μL
    2-甲基苯酚10.247.878.980.165.1
    4-甲基苯酚13.150.282.581.372.3
    2-氯苯酚11.349.183.782.755.9
    4-氯-3-甲基苯酚12.963.189.190.261.2
    2,4-二氯苯酚10.855.391.292.160.7
    2,3,4,6-四氯苯酚15.963.183.481.871.3
    下载: 导出CSV

    表 5  方法线性范围、相关系数、方法检出限

    Table 5.  The linearity range, correlation coefficient and LOD

    化合物线性范围
    (μg/L)
    相关系数检出限
    (μg/L)
    2-甲基酚10.0~500.00.9950.25
    4-甲基酚10.0~500.00.9950.31
    2-氯苯酚10.0~500.00.9970.28
    4-氯-3-甲基苯酚10.0~500.00.9960.35
    2,4-二氯苯酚10.0~500.00.9980.27
    2,3,4,6-四氯苯酚10.0~500.00.9950.30
    下载: 导出CSV

    表 6  方法回收率及精密度

    Table 6.  Recovery and precision tests of the method

    化合物低浓度0.1 μg/L中浓度0.5 μg/L高浓度2.0 μg/L
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    2-甲基酚71.26.981.65.782.25.0
    4-甲基酚72.37.177.76.283.95.3
    2-氯苯酚72.56.781.25.384.54.6
    4-氯-3-甲基苯酚75.27.381.66.387.15.7
    2,4-二氯苯酚78.18.385.18.787.87.3
    2,3,4,6-四氯苯酚74.99.676.58.883.17.2
    下载: 导出CSV
  • [1]

    高超,王启山,夏海燕.水体中酚类化合物测定方法的研究现状[J].天津化工,2010,24(4):41-42. http://www.cnki.com.cn/Article/CJFDTOTAL-TJHG201004017.htm

    [2]

    陆蓓蓓,单晓梅,沈登辉,谢继安,张留喜,汤峰. 超高效液相色谱-二极管阵列检测器法同时测定水中7种有机酚[J].中国卫生检验杂志,2012,22(6):1214-1216. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201206003.htm

    [3]

    何淼,饶竹,苏劲,黄毅.GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物[J].岩矿测试,2007,26(2):101-104. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200702007.htm

    [4]

    周艳玲.酚类化合物检测方法研究进展[J].环境监测管理与技术,2011,23(增刊):70-77. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJS2011S1015.htm

    [5]

    GB /T 5750. 4-2006,生活饮用水标准检验方法[S].

    [6]

    Gottlieb S,Marsh B P.Quantitative determination of phe-nolic fungicides[J].Industrial and Engineering Chemistry,1946,18(1):16-19.

    [7]

    Kidder A G.Determination of yellow color in raw rubber latex films and crepes[J].Analytical Chemistry,1954,26(2):308-311. doi: 10.1021/ac60086a013

    [8]

    Tran D C, Lacerda H D P S.Determination of binding constants of cyclodextrins in room-temperature ionic liquids by near-Infrared spectrometry[J].Analytical Chemistry, 2002, 74(20):5337-5341. doi: 10.1021/ac020320w

    [9]

    Simard G R, Hasegawa I, Bandaruk W, Headington E C. Infrared spectrophotometric determination of oil and phenols in water[J].Analytical Chemistry, 1951, 23(10):1384-1387. doi: 10.1021/ac60058a011

    [10]

    Zhou F R, Li X J, Zeng Z R.Determination of phenolic compounds in wastewater samples using a novel fiber by solidphase microextraction coupled to gas chroma-tography[J].Analytica Chimica Acta, 2005, 538(1-2):63-70. doi: 10.1016/j.aca.2005.02.009

    [11]

    李新纪.环境水质中酚类优先监测物的气相色谱法测定[J].色谱,1996,14(1):37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ601.009.htm

    [12]

    Moder M, Schrader S, Franck U, Popp P.Determination of phenolic compounds in waste water by solid-phase microextraction[J].Journal of Analytical Chemistry, 1997, 357(3):326-332. doi: 10.1007/s002160050162

    [13]

    Lee H B, Peart E T, Svoboda L M.Determination of endocrine-disrupting phenols, acidic pharmaceuticals and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2005,1094(1- 2):122-129. doi: 10.1016/j.chroma.2005.07.070

    [14]

    苏宇亮,方黎.固相萃取-高效液相色谱法测定水中12种酚类化合物[J].现代科学仪器,2004,96(4):55-57. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYQ200404017.htm

    [15]

    Sun A L, Li J, Liu R M.High-performance liquid chro-matographic determination of phenolic compounds in natural water coupled with on-line flow injection membrane extraction-preconcentration[J]. Journal of Separation Science,2006,29(7):995-1000. doi: 10.1002/(ISSN)1615-9314

    [16]

    Saraji M, Bakhshi M.Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatography-mass spectrometric detection[J].Journal of Chromatography A,2005,1098(1-2):30-37. doi: 10.1016/j.chroma.2005.08.063

    [17]

    Kennison R K, Gibberd R M, Pollnitz P A, Wilkinson L K.Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of merlot juice following grapevine exposure to smoke[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16):7379-7383. doi: 10.1021/jf800927e

    [18]

    严伟,李淑芬,田松江.超声波协助提取技术[J].化工进展,2002,21(9):649-651. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ200209006.htm

    [19]

    US Environmental Protection Agency (EPA).Test Methods for the Analysis of Solid Wastes (SW-864 Method No.3550)[S].1986.

    [20]

    EPA Method 3550B, Ultrasonic Extraction[S].1997:16.

    [21]

    吴越.催化化学[M].北京:科学出版社,2000.

    [22]

    谢天民.环境分析化学实验室技术与运营管理[M].北京:中国环境科学出版社,2008.

  • 加载中

(6)

计量
  • 文章访问数:  422
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2013-04-01
录用日期:  2013-06-24

目录