doi: 10.11720/wtyht.2018.1507

雷晓东,李巧灵,李晨,等.北京平原区西北部隐伏岩体的空间分布特征[J].物探与化探,2018,42(6):1125-1133.http://doi.org/10.11720/wtyht. 2018.1507

Lei X D, Li Q L, Li C, et al. Spatial distribution characteristics of several plutons in northwest Beijing plain [J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1125-1133. http://doi.org/10.11720/wtyht.2018.1507

北京平原区西北部隐伏岩体的空间分布特征

雷晓东^{1,2},李巧灵¹,李晨¹,王元²,关伟¹,杨全合¹

(1.北京市地质勘察技术院,北京 100120; 2.中国科学院 地质与地球物理研究所,北京 100029)

摘要: 隐伏岩体的空间形态是地热系统研究的重要内容。利用最新的重力、CSAMT、微动测深和以往的磁法资料研究北京平原区西北部几处隐伏岩体的空间分布,结果表明,花塔岩体、葛村岩体、阳坊岩体和百善东岩体的地球物理特征有所差异,反映了岩体侵入期次的不同及所处构造环境的差异。研究区西南部花塔岩体和葛村岩体之间 分布有较厚的第四系和蓟县系白云岩地层,可能是形成地下热水的主要径流通道。阳坊岩体与蓟县系热储层接触 形态上呈现西缓东陡的特点。隐伏岩体的分布受南口山前断裂、南口—孙河断裂和影壁山断裂构造的联合控制。 关键词:阳坊岩体;南口—孙河断裂;重磁异常;CSAMT;微动测深

中图分类号: P631 文献标识码: A 文章编号: 1000-8918(2018)06-1125-09

0 引言

北京平原区是三面环山的山前冲洪积倾斜平 原。燕山期强烈的构造运动使北京平原区发育了多 处侵入岩体[1]。这些侵入体的形态一般为岩株,规 模大小不等,侵位深度不同,在地壳浅部与热储层穿 插交错,形成水热型地热系统的不透水边界。在地 质构造复杂地区,查明热储层与隐伏岩体的分布位 置与接触关系,才能更好地规避地热开发风险。北 京平原区西北部小汤山地热田和京西北地热田周边 分布有阳坊岩体、花塔岩体、葛村岩体等^[2-3],关于 这些隐伏岩体空间形态的研究较少。隐伏岩体的勘 探方法较多,常用有重力、磁法、大地电磁法等,近年 来,也有采用岩浆热场法、镜质体反射率方法等寻找 隐伏岩体的案例^[4-5]。笔者采用重力、磁法、CSAMT 和微动测深方法分析探讨北京平原区西北部隐伏岩 体的形态和构造背景,为这一地区的地热系统研究 和地热资源勘查提供地球物理依据,同时也为深入 理解北京地区燕山期构造演化和深部动力学过程提 供参考。

1 地质背景

北京市平原区西北部在大地构造位置上属于中 朝准地台燕山台褶带内密怀中隆断(Ⅲ,)和西山迭 坳褶(Ⅲ,)的结合部位。两个三级构造单元以南 口—孙河断裂带(图1,F₁)为界。南口—孙河断裂 带是北京地区规模最大的一条 NW 向第四纪活动断 裂^[6-7],研究表明该断裂在北京平原区表现为枢纽 特性,其 NW 段从昌平南口至北七家,断面倾向 SW,控制了马池口—沙河第四纪凹陷的发育^[8-9]。 南口—孙河断裂向西北延伸并截止于平原区和山区 的分界断裂——南口山前断裂(图1,F₂),南口—孙 河断裂具左旋走滑性质,错断了 NE 向发育的逆冲 推覆构造——影壁山断裂(图1,F3)。广泛发育的 断裂与岩浆活动关系密切,燕山期的岩浆侵入活动 形成了阳坊岩体(M1)、葛村岩体(M2)、花塔岩体 (M3)、阿苏卫岩体(M4)等。阳坊岩体为深色杂岩 体,西部有出露,根据航磁 ΔT 异常圈定岩体的范 围,面积约150 km²,岩体北部为白岗岩,中部为黑云 母花岗岩,南部及东部为闪长岩。花塔岩体为石英

收稿日期: 2017-11-13;修回日期: 2018-01-28

基金项目:中国地质调查局项目(12120114033901);昌平新城地热资源调查评价项目(TC1408CBF);京津冀协同发展区主要活动断裂地球物 理探测项目(121201104000150012)

作者简介: 雷晓东(1983-), 男, 博士, 高级工程师, 主要从事地热资源地球物理勘查技术方面的研究工作。Email: lei-xiaodong@139.com

M1—阳坊岩体;M2—葛村岩体;M3—花塔岩体;M4—百善东岩体;F₁—南口—孙河断裂(北西段);F₂—南口山前断裂;F₃—影壁山断裂;F₄—西沙屯 断裂;F₅—沙河断裂;F₆—郑各庄断裂;F₇—小汤山断裂

图 1 研究区基岩地质构造及工作布置

二长岩,钻孔揭露岩体上覆为第四系。葛村岩体为 闪长岩,钻孔揭露岩体上覆有厚度不大的侏罗系火 山岩和蓟县系白云岩地层^[10]。岩体形成了区内岩 溶水系统或地热系统的隔水边界。

2 方法与数据

笔者采用高精度重力测量、磁法勘探、可控源音 频大地电磁测深(CSAMT)和微动测深数据来研究 北京平原区西北部几处隐伏岩体的空间形态。其中 重力、CSAMT和微动测深工作为2015年由北京市 地质勘察技术院完成,磁法勘探工作为20世纪80 年代由原北京物化探队完成。2015年完成的重力 测量比例尺为1:5万,面积260km²,使用Scintrex公 司的CC-5重力仪进行重力测量,使用北京测绘局 建立的CORS系统进行RTK测量,布格重力异常值 总精度为0.051×10⁻⁵m/s²。利用北京市平原区1: 10万重力资料进行了扩边,采用窗口滑动平均法求 取区域背景场,得到了剩余重力异常。20世纪80 年代完成的北京平原区1:5万地面磁法勘探的总观 测均方误差为10.1 nT。

可控源音频大地电磁测深(CSAMT)是一种人 工源频率域电磁测深方法,广泛应用于地质勘查的 多个领域,在花岗岩地区也有较好的应用[11]。该方 法可以人工控制信号发射强度和频率,频率范围为 2⁻²~2¹³ Hz。频率与探测深度有关,频率越低探测深 度越深,因此该方法具有横向分辨力高、勘探深度大 以及受地形影响小等优点。本次工作完成 CSAMT 剖面7条,总长度17km。采用赤道偶极装置进行标 量测量,同时观测与场源平行的电场水平分量 E, 和 与场源正交的磁场水平分量 H_x。数据处理时利用 电场振幅 E, 和磁场振幅 H, 计算阻抗电阻率;利用 电场相位 E_a 和磁场相位 H_a 计算阻抗相位 φ ;最后 以阻抗电阻率和阻抗相位联合反演电阻率参数并进 行地质解释推断。数据采集使用美国 Zonge 公司生 产的 GDP-32 Ⅱ 型多功能电法仪,场源供电电极距 AB=1000 m,测量电极距 MN=50 m,供电电极与测 量电极平行布置,收发距7~10km,工作频率0.125 ~8192 Hz, 勘探深度1500~2500 m。室内首先对数 据做了预处理,包括剔除畸变点、数据圆滑和静态校 正;使用 Zonge 公司 SCS2D 程序进行了二维反演。

微动是一种由体波(P波和S波)和面波(瑞利

42 卷

波和拉夫波)组成的复杂振动,并且面波的能量占 总能量的 70% 以上^[12]。微动探测是指从台阵观测 到的天然场源微动信号中提取面波频散信息,通过 反演技术获得地下介质 S 波速度结构的地球物理勘 探方法^[13-14]。面波频散曲线与介质密度、纵横波速 度和层厚有关,不同的地下结构具有不同的频散曲 线。近年来,微动测深方法在多个领域得到了较好 的应用[15-16]。常用的微动观测台阵为圆形台阵,一 般在圆心处布设1个,圆周上至少等间距布设3个 观测台站。放置台站的圆周半径称为观测半径 (r),决定探测深度(H)。通常情况下,探测深度 H =(3~5)r^[13]。本次完成微动测深 20 个点,观测半 径 r 为 80、160、320 和 640 m。采用频域空间自相关 法,基于 TremorTom 软件提取了所有阵列的频散曲 线,用阻尼最小二乘反演算法,由相速度频散曲线反 演地下S波速度结构,用于地层分层解释。反演计 算前先基于地质资料给定初始模型,即层数、层厚度 及各层 P 波与 S 波速度初始值,再从给定初始值中 迭代搜索到 S 波速度结构的最优解。

3 地球物理特征

2015年,北京市地质勘察技术院在北京地区开展了岩石密度和磁化率等物性参数测量工作,使用 DX-600Z型全自动电子密度仪进行密度测定、使用 ZH-1型磁力化仪进行磁化率测定^[17]。电阻率和横 波速度参考 1987年原北京物化探队在昌平、小汤山 幅开展区域物探工作的统计资料和 2012年北京市 地质勘察技术院在昌平地区开展岩溶水物探工作的 统计资料[18-19],汇总见表 1。由此可见本区侵入岩 与其他沉积地层存在一定程度的物性差异,具体如 下:① 电性特征。第四系松散沉积物、白垩系流纹 岩、凝灰岩呈低阻,常见值为10~80Ω·m;侏罗系 火山沉积岩和青白口系页岩夹碳酸盐岩呈中阻,一 $般为70~250 \Omega \cdot m$:燕山期侵入岩与奥陶系、寒武 系、蓟县系和长城系的碳酸盐岩、砂岩地层呈高阻, $-般大于 250 \Omega \cdot m$ 。② 磁性特征。太古界磁性最 强,磁化率平均值达3014×10-5SI;侵入岩次之,平 均值在(12~2902)×10-5SI;白垩系流纹岩、凝灰岩 平均值 239×10⁻⁵SI;其他地层呈弱磁或无磁。③ 密 度特征。第四系密度最低,其次是石炭系和青白口 系,侵入岩除花岗闪长岩外,与蓟县系、侏罗系等围 岩密度差异在 0.1 g/cm³ 以上。④ 横波波速特征。 地层时代越老,横波波速越大,第四系与下伏基岩波 速差异最大,基岩内部波速差异不明显。

3.1 重力异常特征

由图 2 可知,全区重力异常值变化范围为-6.7 ~7.2 mGal,总体上呈现东北高西南低的趋势,反映 了基岩起伏形态为北部隆起南部凹陷。在南口—孙 河断裂(F₁)北侧和南侧分别存在 3 个串珠状重力 高异常和低异常,异常长轴方向均为 NW-SE 向,与 断裂走向一致,短轴方向长度各约 2 km,反映了受 F₁ 断裂控制的第四纪沉积速率差异最明显的范围。 沿 F₁ 断裂自西北向东南的重力低异常分别反映了 南口、马池口和沙河 3 个第四纪凹陷的形态。而在 阳坊东部、流村至葛村一带、曹庄至南口一带出现的

地层	岩性	标本 块数	电阻率 ∕(Ω・m)	密度 /(g・cm ⁻³)	磁化率 /(10 ⁻⁵ SI)	横波速度 /(m・s ⁻¹)
第四系(Q)	松散沉积物	- 95	20~80	1.75		150~500
白垩系(K)	流纹岩、凝灰岩	30	11.5~21.7	2.61	239	1450~1500
侏罗系(J)	砾岩、黏土岩、砂岩	90	71 ~ 174	2.73		1400~1600
二 叠 系(P)	砂页岩	60	8~10	2.68		1600~1700
石炭系(C)	砂岩、泥质岩	60	8~10	2.52	—	1600~1700
奥陶系(0)	灰岩	90	800~1500	2.72	_	1700~1800
寒武系(ε)	灰岩、页岩、泥灰岩	120	254~608	2.72	_	1900~2100
青白口系(Qn)	砂页岩夹碳酸盐岩	90	136~248	2.55	_	2200~2500
蓟县系(Jx)	白云岩夹砂页岩	180	540~1000	2.79	-	2200~2500
长城系(Ch)	白云岩、泥灰岩、页岩	120	600	2.66	—	2200~2500
太古宇(Ar)	片麻岩	126	>700	2.75	3014	2200~2500
	花岗岩	30	1301	2.60	1150	
	花岗闪长岩	60	1	2.76	2902	1
侵入岩	白岗岩	30	1470	2.56	306	/
	石英二长岩	66	/	2.63	1286	/
	闪长岩	60	/	2.64	12	1

表1 地层物性特征统计

注:标本块数为密度和磁化率测试的样品数,"一"表示弱磁或无磁;"/"表示无实测数据。

图 2 北京平原区西北部剩余重力异常

重力低异常则与隐伏岩体(分别为阳坊岩体 M1、葛 村岩体 M2 和花塔岩体 M3)的规模和埋深密切相 关。阳坊岩体的重力异常表现为"两低一高",西 部、北部为两个明显的低异常(M1-1、M1-2,极值分 别为-3.65、-3.77 mGal),东南部则出现了较为明显 的重力高异常(M1-3,极值为 6.98 mGal),这与岩体 的岩性差异有关,重力低异常区应以密度较低的白 岗岩为主,高异常区则可能为密度较高的闪长岩,从 而说明阳坊岩体大致分两期侵入。曹庄至南口一带 的重力低异常(极值为-6.66 mGal)还与南口—孙河 断裂(F₁)和南口山前断裂(F₂)联合控制的南口第 四纪沉积盆地的快速发育有较大关系。百善东部前 人钻孔揭露的岩体(M4)重力异常不明显,可能与岩体偏酸性且规模不大有关。此外,对研究区剩余重力异常使用中国地调局 RGIS 软件进行了三维反演,空间步长为 0.5 km×0.5 km×0.5 km,网格剖分数为 72×50×20,反演深度 10 km,反演误差为 0.870,结果见图 3。三维反演结果更清晰地显示了花塔岩体、葛村岩体和阳坊岩体的空间关系。

3.2 磁异常特征

从磁异常等值线图上(图4)可以看出,全区磁 异常 ΔT 的变化范围为-112.7~1482 nT。研究区南 部、西南部以及西北部地区为明显的高磁异常区,异 常值一般大于300nT,高磁异常范围与重力异常范

图 4 北京平原地区西北部磁异常 ΔT 等值线

围基本一致,反映了阳坊岩体(M1)、葛村岩体(M2) 和花塔岩体(M3)的分布。阳坊岩体的磁异常强度 明显高于葛村岩体和花塔岩体,岩体内部自西北向 东南方向磁异常逐渐增强,反映岩体岩性有自酸性 向中基性过渡的特征。百善东部前人钻孔揭露的岩 体(M4)磁异常特征也同样不明显。

3.3 CSAMT 反演电阻率特征

3.3.1 阳坊岩体(M1)

阳坊岩体的侵入活动对本区热储层及火山岩地 层的空间分布有限定性作用,形成了热储层南部的 隔水边界,笔者利用 CSAMT 资料研究阳坊岩体北 部与热储层的接触形态。Z4 测线长度 1.80 km, 南 北向布置。由图 5a 上看,断面内电阻率呈浅部中低 阻,深部逐渐升高的变化趋势,浅部 200~300 m 以 上电阻率横向上连续性差,存在多个间断出现的低 阻异常圈闭,反映了山前地带第四系内部岩性不均 一,在低阻圈闭带之下存在横向上相对连续的等值 线密集带,是第四系与基岩的分界面。基岩内部电 阻率差异明显,剖面南部阻值整体比北部高,且呈现 由浅至深单调递增的变化,反映存在高阻的侵入岩 体;而右部的中低阻异常可能反映了侏罗系的存在, 在 x=550 m 处, 侵入岩与侏罗系之间出现明显的分 界面,接触形态为"下凹"式,1500m深度以下接触 产状有变缓趋势。Z5 测线南起北庄户,北至横桥 村,测线长度 2.70 km。从 CSAMT 反演电阻率等值 线断面图(图 5b)上看,浅部低阻层与深部高阻层的 界面比较明显,但位置比西部 Z4 测线处深,由此推 断基岩面深度在 400~600 m;在 x=1700 m 左右,电 阻率出现明显的横向间断,南侧为相对高阻区,反映 了隐伏岩体的特征;北侧中低阻层为侏罗系,其底界 埋深在1200~1400m,再向下电阻率等值线弯曲形 态出现较大变化,推测侏罗系之下还存在蓟县系热 储层。隐伏岩体与侏罗系、蓟县系之间接触产状较 Z4 剖面陡。

3.3.2 葛村岩体(M2)

由重磁资料可知,葛村岩体位于阳坊岩体西北, 深部可能与阳坊岩体相连,浅部更靠近山区,与热储 层关系密切,可以从 CSAMT 法的 Z2 测线定量反演 成果上解释两者的相互关系。Z2 测线位于南口农 场二分场西侧,长度 2.10 km,南北向布置。从 CSAMT 反演电阻率等值线断面图(图 5c)上可以看 到,纵向上电性结构可分为"低—中—高"3 层,浅部 电阻率形态变化大,反映了南口冲洪积扇第四系岩 性不均一及各向异性特点,浅部不连续的多个低阻 圈闭带的底部电阻率等值线呈现横向连续、纵向密 集特点,其高低变化反映了基岩面的起伏形态,推断 基岩面埋深 300~400 m。中、深部电阻率呈单调递 增态势,整体上较阳坊岩体北部两测线电阻率高,推 断第四系之下为蓟县系热储层,其底界埋深在900 m以上,其下为隐伏岩体。横向上看测线北部等值 线向深部拉伸,反映中高阻的蓟县系热储层厚度较 南部大,热储层与隐伏岩体的接触形态由南部的起 伏波状过渡到北部快速陡降的斜坡状接触。

3.3.3 花塔岩体(M3)

花塔岩体位于研究区西部,山区有出露,在南口 山前断裂以东隐没于平原区之下。岩体的侵入受南

图 5 不同测线的重磁异常曲线、CSAMT 反演电阻率断面及地质解释推断

口山前断裂控制,但后期遭受南口—孙河断裂切割 改造,形成热储层西部的隔水边界,其边界位置及形 态可以依据 CSAMT 法 Z3 测线的探测结果研究。 Z3 测线位于南雁路,长度 1.50 km, SN-NE 向布置。 从 CSAMT 反演电阻率等值线断面图(图 5d)上看, 剖面浅部主要由两个规模较大横向上形态相连的低 阻圈闭异常组成,自 SW-NE 低阻层厚度有变薄趋势,在低阻异常之下,电阻率纵向梯度加大,反映基 岩面位置在 300~400 m,埋深上西南深东北浅。剖 面深部,西南方向延续浅层的低阻形态,但梯度变化 较小,向东北方向变化为高阻异常体,推断西南部基 岩为蓟县系,东北部为隐伏岩体,中部 x = 600 m 左 右出现等值线横向梯度带,推测为两者之间的界面, 界面形态较陡,也可能为断层接触。

3.3.4 百善东岩体(M4)

百善东岩体位于南口—孙河断裂带东北侧,小 汤山地热田西南部。该岩体在航磁、地磁和重力异 常图上均显示不明显,说明规模较小,但已有钻孔证 实了该岩体的存在。本次利用两条控制性 CSAMT 剖面研究其延伸形态。Z6 测线长度 1.80 km,方向 东西。从 CSAMT 反演电阻率等值线断面图(图 5e) 上看,断面自上而下呈现"低—中—高"三元结构特 征,浅部低阻层反映了第四系厚度为 100~200 m;其 下中阻层厚度呈现西厚东薄的趋势,反映西部可能 存在青白口系砂页岩地层;断面深部电阻率变化不 大,形态趋缓,结合附近钻孔资料推断为蓟县系热储 层和隐伏岩体,根据电阻率等值线横向相对密集的 区域可以看出隐伏岩体与沉积地层的接触产状相对 较缓。Z7 测线长度 3.90 km,方向北东。从 CSAMT 反演电阻率等值线断面图(图 5f)上看,浅部为低阻 异常多呈规模较小的圈闭区,其下出现横向上并不 十分连续的等值线密集带,深度小于 200 m,推断为 第四系与基岩的界面。深部在剖面西南仍有厚度较 大的低阻层,但成层特征渐趋明显,推断基岩地层为 青白口系和蓟县系;剖面东北出现明显的高阻异常 凸起,推断为百善东岩体,直接隐伏于第四系之下, 根据电阻率异常形态判断岩体与热储层的接触产状 为西南略缓而东北较陡。

a—Z4 剖面 W16 点微动测深频散曲线;b—Z4 剖面 W16 点反演视 S 波速结构;c—Z5 剖面 W7 点微动测深频散曲线;d—Z5 剖面 W7 点反演视 S 波速结构 图 6 Z4 剖面 W16 点及 Z5 剖面 W7 点微动测深频散曲线及反演视 S 波速度结构图

3.4 微动测深反演视 S 波速度特征

单点的微动测深频散曲线、反演视 S 波速度结构及地层解释如图 6 所示,其中 W16 号点位于 Z4 剖面附近、W07 号点位于 Z5 剖面附近,两点推断地层结构与 CSAMT 一致。

利用研究区西部 20 个微动测深点的反演结果, 可以绘制出三维视 S 波速度(V_x)结构图(图 7)。图 中 x 方向长 20 km,y 方向长 10 km,反演深度 4 km。 由图可见, V_x 纵向上基本呈现由浅到深逐渐增高的 趋势,浅部低速层为沉积盖层,深部高速层为蓟县 系、侵入岩。南部阳坊岩体和葛村岩体相连,边界不

图 7 微动测深反演视 S 波速度

清,总体形态上西缓东陡,而西部花塔岩体形态为北 陡南缓,即靠近南口—孙河断裂带处与热储层接触 产状较陡。3个岩体在深部可能连成一体,与磁法、 重力异常对应。在研究区西南,视S波速度结构显 示,岩体的顶界埋深在3000m以上。

4 讨论

北京地区燕山期岩浆活动频繁,侵入岩在山区 广泛出露,并向平原区延伸,隐没于沉积地层之下。 探查平原区隐伏岩体的空间形态及其与构造活动的 关系,是地热系统研究的重要内容。笔者利用最新 获得的高精度重力资料、以往磁法资料、CSAMT 和 微动测深资料,综合研究了北京平原区西北部几个 隐伏岩体的空间分布特征,部分推断得到了钻探证 实。重磁资料主要用于圈定岩体的形态, CSAMT 和 微动测深则主要用于定量反演确定岩体的顶深和产 状。从重磁等值线平面图上切取 CSAMT 剖面处的 重磁异常数据,与反演电阻率综合分析,认为呈现重 力低、磁力高、电阻率高特征的异常体推断为隐伏岩 体。一般认为重磁反演的垂向分层精度较低,而 CSAMT 电阻率分辨力与地层电阻率差异相关,在本 区有两个界面较为明显,一是第四系与基岩之间,垂 向界面表现为浅部低阻圈闭带下沿,二是中低阻的 侏罗系与下伏高阻的蓟县系或隐伏岩体,表现为电 阻率横向变化大、存在梯度异常带。隐伏岩体与蓟 县系阻值差异不大,界面较难分辨。但各地层之间 波速差异明显,采用微动测深法可以作为地层垂向 分层的重要依据。Z4 剖面 W16 号点、Z5 剖面 W07 号点的视 S 波速度结构结合 CSAMT 反演电阻率形 态可联合推断出隐伏岩体顶界面。

花塔岩体和葛村岩体的地球物理特征为"高 阻、低重、高磁",研究区西部W13、W14号微动点处 施工的钻孔证实了花塔岩体和葛村岩体的存在。 W13号孔于734m深度揭露肉红色花岗二长岩,岩 体上覆为第四系。W14号孔于855m揭露灰黑色闪 长岩,岩体上覆侏罗系(479~855m)、第四系(0~ 479m)^[10]。航磁异常显示北京地区规模较大的隐 伏岩体均呈近圆形分布^[23],而本区花塔岩体和葛村 岩体呈椭圆状,长轴方向近NE,其中花塔岩体和葛村 岩体呈椭圆状,长轴方向近NE,其中花塔岩体的形态明显受控于南口山前断裂。Z2和Z3测线 CSAMT显示,花塔岩体的南部、葛村岩体的北部与 热储层的接触形态均表现为陡倾,推断此两个岩体 之间蓟县系热储层的厚度较大,微动测深视S波速 度在西南部的异常形态也说明了这个问题,岩体上 部的蓟县系、第四系等地层形成倒锥形与西南部山 区裸露的白云岩地层沟通,这为西南部山区降水补 给本区热储层提供了重要通道,但岩体的侵入挤压 限制了蓟县系热储层的赋存分布空间。

阳坊岩体分两部分, M1-1 和 M1-2 的地球物理 特征表现为"高阻、低重、高磁", M1-3 的地球物理 特征表现为"高阻、高重、高磁"。结合前人地质认 识,推断 M1-3 岩体偏中性(前人钻孔揭露岩性为闪 长岩),而 M1-1 和 M1-2 岩体偏酸性,侵入期次可能 分别为髫髻山期和张家口期,分2~3期侵入。对比 Z4 和 Z5 测线 CSAMT 解释成果可知, 阳坊岩体与蓟 县系热储层的空间关系可以总结为,热储层受到燕 山期 NW-SE 方向挤压应力作用(这一应力作用形 成了北小营---昌平向斜、影壁山推覆构造),经历了 火山喷发和岩浆侵入活动改造,热储层与岩体接触 形态上呈现西缓东陡的特点,西部接近北小营一昌 平向斜核部,热储层可能缺失。百善东岩体的地球 物理特征表现为"高阻、低重、低磁",平面重磁异常 界线不明显,推断岩体规模较小,岩性偏酸性,侵入 期次可能为张家口期,该岩体的侵入可能与小汤山 背斜构造的形成有关。

综合以上4处岩体的地球物理特征,结合已有 钻孔资料,分析岩体、火山岩分布及其与区内主要断 裂的空间关系,可以进一步探讨本区燕山期地质构 造演化的历史。北京地区岩浆侵入活动的时限为 200~65 Ma^[24], 与火山活动对应大致可分为早、中、 晚3期,分别是早侏罗世南大岭期、晚侏罗世髫髻山 期和早白垩世张家口期。山区阳坊岩体和花塔岩体 的测年结果为 118~133 Ma^[1,24],为中晚期产物;从 研究看阳坊岩体的侵入可能始于燕山中期(髫髻山 期),形成 M1-3 岩体,燕山晚期伴随南口山前断裂 和影壁山断裂的强烈活动,岩浆侵入到早期形成的 中性岩体中,同时期形成葛村岩体和花塔岩体,以及 北侧的侏罗系火山沉积岩;而百善东岩体则可能为 燕山晚期张家口期侵入(岩体北部沉积了张家口组 火山岩),侵入可能受控于近东西向断裂(阿苏卫---小汤山断裂)^[25]。燕山期后诸岩体的分布形态又受 到 NW 向南口---孙河断裂带活动的控制,断裂南部 的岩体上覆第四系厚度 500 m 左右;而断裂北侧的 百善东岩体上覆第四系小于 100 m 左右。

5 结论

1)重、磁、电和波速等资料均证实了北京平原
 区西北部花塔岩体、葛村岩体、阳坊岩体和百善东岩

体的存在,不同岩体的地球物理特征有所差异;花塔 岩体和葛村岩体呈现"高阻、低重、高磁",阳坊岩体 主体呈现"高阻、低重、高磁",东南部为"高阻、高 重、高磁",百善东岩体呈现"高阻、低重、低磁"。

2)研究区西南部花塔岩体和葛村岩体之间分 布有较厚的第四系和蓟县系白云岩地层,可能形成 地下热水的主要径流通道。阳坊岩体与蓟县系热储 层接触形态上呈现西缓东陡的特点。隐伏岩体的分 布受南口山前断裂、南口—孙河断裂和影壁山断裂 构造的联合控制。

参考文献:

- [1] 孙志明,汪洋,邓晋福,等.北京地区中生代侵人岩的时间序列 及其地质意义[J]. 矿物岩石地球化学通报,2007,26(3):258
 - 262.
- [2] 程素华,汪洋.北京阳坊岩体元素地球化学特征、成因及构造 背景[J].地质论评,2010,56(2):205-214.
- [3] 雷晓东,胡圣标,杨全合,等.北京南口—孙河断裂带水热系统
 特征与成因分析[J].地球物理学报,2017,60(5):1838-1850.
- [4] 焦守涛,张旗,金维浚,等.介绍一种寻找隐伏岩体的好方法: 岩浆热场法[J].岩石学报,2016,32(2):617-628.
- [5] 张旗,金维浚,李承东,等.利用镜质体反射率方法寻找隐伏岩 体—岩浆热场应用的一个实例[J].大地构造与成矿学, 2015,39(6):1094-1107.
- [6] 张培震,邓起东,张竹琪,等.中国大陆的活动断裂、地震灾害及其动力过程[J].中国科学:地球科学,2013,43(10):1607-1620.
- [7] 陈长云.张家口—渤海断裂带分段运动变形特征分析[J].地 震, 2016, 36(1): 1-11.
- [8] 柯柏林.北京市平原区北部孙河断裂的地热地质特征[J].现 代地质, 2009, 23(1): 43-48.

- [9] 张磊,白凌燕,蔡向民,等.北京南口—孙河断裂北西段综合 物探剖面定位及其活动性研究[J].现代地质,2014,28(1): 234-242.
- [10] 雷晓东,关伟,郭彤,等.北京昌平高崖口—南口隐伏岩溶水 系统地质构造新认识[J].地质科学,2016,51(1):116-127.
- [11] 孟凡兴,乔勇,胡鉴,等.可控源音频大地电磁测量在花岗岩型
 铀矿勘查中的应用[J].物探与化探,2016,40(3):488-492,513.
- [12] Toksöz M N, Lacoss R T. Microseisms: mode structure and sources
 [J]. Science, 1968, 159(3817): 872 873.
- [13] Okada H. The microtremor survey method. Society of Exploration Geophysicists [C] // Geophysical Monographs Series Vol. 12 Tulsa; SEG, 2003.
- [14] Okada H. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Explor. Geophys., 2006, 37(1): 73-85.
- [15] 冉伟彦, 王振东.长波微动法及其新进展[J]. 物探与化探, 1994, 18(1): 28-34.
- [16] Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis [J]. Geophys. J. Int., 2012, 188(1): 115 - 122.
- [17] 北京市地质勘察技术院.北京地区岩石密度和磁化率测试总结 报告[R],2015.
- [18] 北京市地质局物化探队.北京平原区北7幅1:5万电测深工作 报告[R],1987.
- [19] 北京市地质勘察技术院.北京岩溶水资源勘查评价工程水文地 质物探工作成果报告[R],2012.
- [20] 张先,赵丽.利用磁异常解析方法试验研究城市断裂[J].地 震地质,2007,29(2):336-353.
- [21] 鲍亦冈, 刘振峰, 王世发,等.北京地质百年研究[M].北京:地 质出版社,2001:126-127.
- [22] 王泽龙. 北京市小汤山地区地温场特征及地下热水成因模式 分析[D]. 北京:中国地质大学(北京),2007.

Spatial distribution characteristics of several plutons in northwest Beijing plain

LEI Xiao-Dong^{1,2}, LI Qiao-Ling¹, LI Chen¹, WANG Yuan², GUAN Wei², YANG Quan-He¹

(1.Beijing Institute of Geo-exploration Technology, Beijing 100120, China; 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract: The survey of pluton distribution is vital to the study of geothermal system. Using the latest gravity, CSAMT, microtremor survey and previous magnetic data, the authors studied the spatial distribution of several plutons in northwest Beijing. The results show that these plutons have different geophysical characteristics, which suggests that they were formed in different intrusive periods and were developed in different tectonic environments. There are thick dolomite strata of Quaternary period and Jixian System between Huata pluton and Gecun pluton in the southwest of the study area, which may be the main flow channel of underground hot water. The intrusive occurrence of Yangfang pluton exhibits gentle slope in the west and steep slope in the east. The distribution of these plutons is controlled by Nankou Mountain front fault, Nankou-Sunhe fault and Yingbishan fault.

Key words: Yangfang pluton; Nankou-Sunhe fault; gravity and magnetic anomaly; microtremor survey; CSAMT