doi: 10.11720/wtyht.2019.1470

章新文,高儇博,杨云飞,等.泌阳凹陷双河油田原油地球化学特征及精细油—源对比研究[J].物探与化探,2019,43(5):966-975.http://doi. org/10.11720/wtyht.2019.1470

Zhang X W, Gao X B, Yang Y F, et al. Geochemistry and oil-source rock correlations in the Shuanghe oilfield, Biyang sag, Nanxiang basin [J]. Geophysical and Geochemical Exploration, 2019, 43(5):966-975. http://doi.org/10.11720/wtyht.2019.1470

泌阳凹陷双河油田原油地球化学特征 及精细油—源对比研究

章新文1,高儇博2,3,杨云飞1,谢春安1,谭静娟1

(1.中国石化河南油田分公司石油勘探开发研究院,河南郑州 450000;2.复杂油气田勘探开发重 庆市重点实验室,重庆 401331;3.重庆科技学院石油与天然气工程学院,重庆 401331)

摘要:以双河油田典型原油样品为基础,采用气相色谱—质谱分析技术(GC-MS),通过多种生物标志物参数对比和色谱图特征分析,对核二段、核三段共计28个原油样品做详细的地球化学特征描述和精细油—源对比。分析结果表明,双河油田核三上亚段原油饱和烃色谱图为前峰型和双峰型,重排甾烷和三环萜烷的相对含量较低;而核三下亚段原油饱和烃色谱图主要为前峰型,重排甾烷和三环萜烷的相对含量较高;核三段原油 C₁₉、C₂₀、C₂₁三环萜烷 呈上升型分布,伽马蜡烷含量较高,C₂₇~C₂₉规则甾烷以"V"字型分布为主。核二段和核三段原油,陆源高等植物和低等水生生物均有贡献,且沉积环境较还原,核三下亚段原油成熟度明显高于核三上亚段原油,因此最终确定核三下亚段原油主要来源于核三下亚段烃源岩,而核三上亚段原油则为核三上亚段和核三下亚段烃源岩的混源油。 关键词:双河油田;原油;生物标志化合物;气相色谱—质谱;油源对比

中图分类号: P632 文献标识码: A 文章编号: 1000-8918(2019)05-0966-10

0 引言

原油的生物标志化合物组合特征可提供油气来 源、沉积环境、成熟度、次生改造程度等多方面的重 要信息,是油气成因分析和油源对比、判断油气运移 的有效工具^[1]。双河油田是我国著名的"小而肥" 的亿吨级大油田,区内渐新统核桃园组三段(核三 段)是主要的生油层和储集层,核桃园组二段(核二 段)为主要储集层,目前该油田已处于高成熟勘探 期,但仍有一定的潜力。有不少学者对双河油田做 学指标相对单一,没有数据相关图作支撑,油源对比 不够精细。介于此种原因,笔者以双河油田典型原 油样品为基础,采用气相色谱—质谱分析技术(GC-MS),通过多种生标参数对比和色谱图特征分析对 28个原油样品做详细的地球化学特征描述和精细 油—源对比,厘清核三上亚段和核三下亚段的油— 源关系,为进一步油气勘探和采收提供依据。

1 区域地质概况

泌阳凹陷位于河南省南部唐河县与泌阳县之

过大量研究,但主要集中在储层特征[2-5]、提高采收	间,是我国东部地区南襄盆地内发育的一个相对独
率[6,7]、沉积模式[8]、油气成藏机理等方面[9],仅有	立的小型凹陷,总面积约1000 km ² ,其形成主要受
一篇涉及原油地球化学特征描述的文章[10],文章主	南部 NWW 向的唐河—栗园断裂和东部 NE 向的泌
要对双河油田烃源岩作出评价,并通过成熟度差异	阳—栗园断裂的共同作用 ^[11] 。整个凹陷在平面上
将核三段原油分为4种类型,但是所使用的地球化	呈端部北指的扇形展布,剖面上构成南深北浅的箕

收稿日期: 2018-12-20; 修回日期: 2019-06-21

基金项目:国家科技重大专项子课题(2017ZX05049-005-005)、国家青年科学基金项目(41402118)、重庆市基础研究与前沿探索项目

(cstc2018jcyjAX0503)、重庆市教委科学技术研究项目(KJQN201801502)

作者简介:章新文(1984-),男,高级工程师,主要从事石油勘探地质综合研究工作。Email:853804448@qq.com 通讯作者:高儇博(1987-),男,讲师,主要从事油气地球化学和石油地质研究工作。Email: gaoxuanbo@qq.com

状凹陷。根据凹陷发育特征和两条边界断裂对不同 区域的控制作用,泌阳凹陷次级构造单元可进一步 划分为南部陡坡构造带、中央凹陷带和北部缓坡构 造带(图1)^[12]。

泌阳凹陷基底为北秦岭褶皱带的秦岭群和二郎 坪群变质岩系,其中古元古界秦岭群为一套混合岩、 片岩和大理岩,二郎坪群是一套细碧角斑岩、片岩和 大理岩。凹陷内自下而上发育的沉积地层有古近系 大仓房—玉皇顶组、核桃园组和廖庄组,新近系凤凰 镇组以及第四系。 双河油田位于泌阳凹陷西南部双河鼻状构造 上,其构造相对简单,鼻状构造轴向为 NW-SE 向,并 向 SE 倾伏^[10]。区内多发育砂岩上倾尖灭为主的岩 性—构造复合油气藏。油田烃源岩为渐新统核桃园 组三段湖相泥岩,该套烃源岩在整个凹陷区分布范 围广,有机质类型好,丰度高,成烃门限浅,生烃潜力 巨大。储集层则为核三段扇三角洲砂体,该套砂体 单层多且厚度大,储层物性好,加之发育 100~200 m 以泥岩为主的区域盖层,使得双河油田具备良好的 生、储、盖及圈闭条件^[10]。

图 1 泌阳凹陷构造划分及研究区位置 Fig.1 Structural division and regional location of Biyang Sag

2 样品与实验

2.1 原油样品

本次研究的28个原油样品均取自泌阳凹陷双 河油田核三段和核二段,囊括核三段不同层位(I 砂组~III砂组,表1)。所取样品主要为正常原油, 干。层析柱的充填使用湿法充填,按硅胶:氧化铝= 3:2(体积比)且先硅胶后氧化铝的顺序倒入玻璃柱 内(内径12mm),在此期间时刻保持柱子润湿,待正 己烷液面与填充氧化铝齐平时加入之前去除沥青质 的样品,将样品充分吸附在充填物内,用50mL正己 烷和二氯甲烷的混合溶剂(v/v=2:1)及70mL氯仿 和无水乙醇的混合溶剂(v/v=98:2)依次淋洗出饱

其密度介于 0.84~0.91 g/cm³ 之间, 黏度普遍小于 100 mPa・s, 具有高凝固点(28 ℃~43 ℃)、高含蜡 (25.8%~39.2%)、低含硫(0.07%~0.14%) 的特 点^[10]。

2.2 实验方法

2.2.1 柱层析

称取 50~100 mg 的原油样品,先用正己烷完全 溶解(超声),静置 12 h;随后利用脱脂棉和漏斗过 滤掉沥青质,收集滤液,旋转蒸发至 3~5 mL,残留在 脱脂棉上的沥青质用氯仿冲洗收集,置于室温挥发 和烃、芳香烃和胶质。最后将收集到的各组分在通风橱内挥发干后称重^[13]。

2.2.2 GC-MS 分析

本次实验所用 GC-MS 型号为美国安捷伦公司 (Agilent)的 7890 气相色谱仪搭配 5975C 质谱仪。 色谱柱型号为 DB-5MS,60 m×0.25 mm×0.25 µm (J&W Scientific, Folsom, CA, USA)。载气为氦气 (99.999%);载气流速为 1 mL/min;进样口温度为 300 ℃;饱和烃和芳香烃使用 Agilent 7683B 自动进 样器进样,进样量均为 1 µL;离子源(EI)温度设为

• 968 •

		Table 1	Crude oil group a	nalysis of Biyang Sag		
井号	层位	深度/m	饱和烃含量/%	芳香烃含量/%	胶质+沥青质含量/%	饱芳比
双浅 3	H21	884.8	52.62	15.69	31.79	3.35
双资1	H31	1345.8	72.51	10.70	16.80	6.78
双 T121	H31	1411.3	64.63	15.49	19.87	4.17
双 T306L	H31	1378.0	71.90	16.27	11.83	4.42
双 T306X	H31	1378.0	68.98	16.91	14.12	4.08
双 3240	H32	1457.1	62.67	15.20	22.13	4.12
双资1	H33	1586.8	64.93	14.73	20.32	4.41
双资1	H33	1614.2	57.97	12.05	29.98	4.81
双 K3103	H33	1649.7	67.50	14.07	18.43	4.80
双资1	H34	1722.0	64.63	14.00	21.38	4.62
双资2	H34	1660.8	64.63	25.56	9.81	2.53
双资 2	H34	1799.5	74.92	13.27	11.82	5.64
双 JK452	H34	1730.2	68.50	11.38	20.12	6.02
双 H417L	H34	1752.9	71.98	11.76	16.26	6.12
双 H417X	H34	1752.9	76.10	9.61	14.30	7.92
双资 2	H35	1965.4	79.79	9.80	10.39	8.14
双资2	H35	1891.7	66.17	14.59	19.24	4.54
双资 2	H35	1901.0	73.44	19.08	7.48	3.85
双 3-23	H35	1917.6	70.94	10.33	18.73	6.87
双 H494	H35	1758.4	62.98	20.67	16.35	3.05
双资2	H36	2028.3	69.33	10.89	19.78	6.37
双资 2	H36	2097.9	74.20	12.17	13.64	6.10
双 T4-136	H36	1953.6	74.11	11.52	14.36	6.43
双观 20	H37	2005.0	86.14	8.33	5.53	10.34
双 10-107	H37	1918.8	68.84	12.60	18.56	5.46
双资 2	H38	2342.3	77.09	9.88	13.03	7.80
双资 2	H38	2388.7	62.34	7.32	30.34	8.51

表1 双河油田原油族组分分析结果

注: H21 表示核桃园组二段 1 砂组, H31~H38 表示核桃园组三段 1 油组~8 油组

72.06

2282.4

230 ℃,四级杆温度为 150 ℃,传输线温度为 280 ℃。采用全扫描和 SIM 两种模式,其中全扫描的扫 描范围为 50~550 amu, SIM 模式提取离子为 m/z 85、m/z 191 和 m/z 217;采用-70 eV 电子轰击能;因 样品均为正己烷溶解,所以溶剂延迟设为 7 min。升 温程序为 50 ℃停留 1 min;然后以 20 ℃/min 升温至 100℃,停留 0 min;然后以 3 ℃/min 升温至 310 ℃, 停留 26.5 min^[14]。数据记录和处理所使用的软件 为仪器配套的 MSD ChemStation E.02.02.1431。

H38

0.9%,处于主生烃期。因此,核三段烃源岩有机质 类型好、丰度高、成熟度适中,为一套较好烃源岩。

15.61

5.84

4 原油地球化学特征

12.33

4.1 族组分

作为原油宏观组成的表现形式,族组分特征能 够反映原油最基本的化学组成信息,其中饱和烃和 芳香烃组分最为重要,它们的化合物组成特征可以

3 烃源岩地球化学特征

新泌 42

双河油田烃源岩主要发育于核桃园组三段。该 套烃源岩 TOC 值主要分布于 1%~5%,其中核三上 亚段(I砂组~IV砂组)平均值为 2.19%,核三下亚 段(V砂组~III)相对较低,平均值为 1.22%;烃 源岩有机质类型以II1型为主,I型次之;通过镜质 体反射率 R_o 测定可以得出,核三段烃源岩在 1920 m 处的 R_o 值为 0.5%,在 2 400 m 深度即已达到 提供确定石油的原始有机质类型、热演化程度、沉积 环境以及成藏后油气的次生变化特征等的有效信 息^[15]。

从原油样品的族组分分析结果(表1)可以看 出,除了双浅3井,双河油田原油饱和烃含量均较 高,为62.34%~86.14%,平均为69.97%;芳香烃含 量在7.32%~25.56%,平均为13.44%;胶质+沥青质 含量在5.53%~31.79%,平均为17.21%;饱芳比在 2.53~10.34,平均为5.61。该数据反映出双河油田 原油主要属于正常原油。 从饱和烃色谱图分析可得(图 2),双河油田不同层位中,原油的正构烷烃序列组成完整,碳数一般分布在 C₁₂~C₃₆,少数达到 C₃₉。峰型有前峰、后峰和双峰型 3 种类型,其中核二段为前峰型,主峰碳主

要为 C₁₇,说明其生油母质中水生生物来源较为丰富;核三上亚段主要双峰型,主峰碳 C₁₇~C₂₇均有分布,反应了陆生和水生的双重生物来源;核三下亚段主要为前峰型,主峰碳集中在 C₁₇~C₂₃,反映其具有较高的成熟度(表 2)。

图 2 双河油田典型原油样品正构烷烃 GC-MS 色谱(m/z 85)

Fig.2 m/z 85 chromatograms showing saturated hydrocarbons of typical oil samples from Shuanghe Oilfield

表 2 双河油田原油生物标志化合物参数

Table 2	Biomarker	parameters	of	oils	from	Shuanghe	Oilfield
---------	-----------	------------	----	------	------	----------	----------

++ 旦	目侍	宓 亩/	Pr/	Ph/	Pr/	$\sum nC_{21} - /$	十修碑	OFD	低碳数甾烷/	重排甾烷/	C29 S/	C ₂₉ ββ/	Ts/	C ₂₉ M/	T. /II	C ₃₀ G/	C ₂₄ TeT/
开写	压但	休度/m	<i>n</i> C ₁₇	nC ₁₈	Ph	$\sum nC_{22} +$	$\Sigma nC_{22} + \Sigma nC$	ULP 规则甾烷	规则甾烷	规则甾烷	(S+R)	$(\alpha \alpha + \beta \beta)$	Tm	$C_{30}H$	Ir/H	$C_{30}H$	C ₂₆ Tr
双浅 3	H21	884.8	0.53	2.88	0.38	1.43	C ₁₇	1.11	0.01	0.05	0.30	0.22	0.12	0.08	0.24	0.32	0.98
双资1	H31	1345.8	1.60	2.77	0.40	0.42	C ₂₅	1.06	0.02	0.11	0.45	0.35	0.58	0.06	0.13	0.26	0.53
双 T121	H31	1411.3	0.49	1.45	0.41	1.35	C ₁₇	1.07	0.02	0.13	0.46	0.36	0.61	0.06	0.15	0.26	0.50
双 T306L	H31	1378	0.55	1.43	0.33	0.44	C ₂₇	1.01	0.04	0.11	0.49	0.36	0.50	0.14	0.22	0.21	0.49
双 T306X	H31	1377.95	0.53	1.42	0.31	0.39	C ₂₇	1.02	0.02	0.09	0.47	0.35	0.47	0.15	0.09	0.21	0.49
双 3240	H32	1457.1	0.49	1.32	0.39	1.19	C ₁₇	0.96	0.03	0.11	0.47	0.37	0.54	0.05	0.16	0.26	0.51
双资1	H33	1586.8	0.95	1.71	0.42	0.41	C ₂₅	1.03	0.02	0.13	0.49	0.39	0.63	0.07	0.16	0.28	0.52
双资1	H33	1614.2	1.08	2.25	0.42	0.42	C ₂₃	1.06	0.02	0.09	0.46	0.35	0.54	0.04	0.12	0.20	0.61
双 K3103	H33	1649.7	0.45	1.37	0.40	1.02	C ₁₇	0.96	0.02	0.12	0.47	0.37	0.59	0.05	0.12	0.22	0.52
双资1	H34	1722	1.09	2.16	0.38	0.31	C ₂₇	1.03	0.02	0.12	0.45	0.37	0.53	0.07	0.08	0.26	0.55
双资 2	H34	1660.8	1.47	1.93	0.32	0.27	C ₁₈	0.94	0.06	0.17	0.55	0.54	1.41	0.33	0.67	0.38	0.43
双资 2	H34	1799.5	0.88	1.02	0.67	0.51	C ₂₂	1.03	0.07	0.19	0.53	0.51	0.74	0.33	1.30	0.50	0.52
双 JK452	H34	1730.2	0.56	1.51	0.44	1.33	C ₁₇	0.96	0.02	0.12	0.46	0.36	0.52	0.05	0.12	0.21	0.59
双 H417L	H34	1752.9	0.50	1.33	0.33	0.46	C ₂₇	1.02	0.03	0.10	0.50	0.38	0.53	0.15	0.14	0.19	0.52
双 H417X	H34	1752.9	0.55	1.42	0.33	0.39	C ₂₇	1.02	0.02	0.10	0.49	0.37	0.48	0.15	0.10	0.18	0.53
双资 2	H35	1965.4	0.72	0.93	0.55	0.80	C ₂₁	1.05	0.08	0.16	0.52	0.52	0.73	0.22	1.40	0.97	0.32
双资 2	H35	1891.7	1.42	1.90	0.45	0.46	C ₂₃	1.06	0.04	0.15	0.50	0.46	0.32	0.23	0.94	0.80	0.50
双资 2	H35	1901	1.03	1.54	0.35	0.50	C ₂₃	1.06	0.02	0.15	0.50	0.43	0.24	0.23	1.29	0.73	0.44
双 3-23	H35	1917.6	0.33	0.61	0.55	1.64	C ₁₈	0.95	0.08	0.19	0.56	0.55	1.45	0.30	0.85	0.26	0.43
双 H494	H35	1758.4	0.62	1.77	0.46	1.58	C ₂₂	0.97	0.07	0.12	0.54	0.52	0.81	0.18	0.11	0.26	0.56
双资 2	H36	2028.3	0.87	1.69	0.34	0.60	C ₂₂	1.09	0.06	0.17	0.50	0.47	0.39	0.30	1.27	0.83	0.34
双资 2	H36	2097.9	0.86	1.41	0.46	1.05	C ₂₀	0.96	0.06	0.17	0.51	0.47	1.29	0.27	1.01	0.67	0.37
双 T4-136	H36	1953.6	0.43	1.06	0.51	1.62	C ₁₇	1.05	0.04	0.13	0.49	0.43	3.35	0.19	0.96	0.71	0.42
双观 20	H37	2005	0.46	1.31	0.42	1.73	C ₁₇	1.06	0.07	0.20	0.53	0.50	0.80	0.68	1.38	0.96	0.26
双 10-107	H37	1918.8	0.43	1.26	0.44	1.67	C ₁₇	1.07	0.06	0.16	0.48	0.42	0.47	0.34	1.47	1.00	0.39
双资 2	H38	2342.3	1.26	2.37	0.31	0.59	C ₂₂	1.05	0.06	0.21	0.51	0.55	0.51	0.62	1.65	0.90	0.32
双资 2	H38	2388.7	1.14	2.42	0.39	0.53	C ₂₂	1.03	0.05	0.22	0.53	0.53	0.40	0.56	1.39	0.81	0.41
新泌 42	H38	2282.4	0.59	1.93	0.32	2.70	C ₁₇	1.06	0.00	0.00	0.50	0.46	0.30	0.07	1.00	1.08	0.38

注:表中比值均为烷类化合物含量比;Pr为姥鲛烷;Ph为植烷;nC为正构烷烃;OEP为奇偶优势指数;低碳数甾烷/规则甾烷=(C₂₁孕甾烷含量+C₂₂升孕甾烷含 量)/(C₂₇规则甾烷含量+C₂₈规则甾烷含量+C₂₉规则甾烷含量);重排甾烷/规则甾烷=(C₂₇重排甾烷含量+C₂₈重排甾烷含量+C₂₉重排甾烷含量)/(C₂₇规则甾烷含量) C₂₈规则甾烷含量+C₂₉规则甾烷含量);C₂₉S/(S+R)=C₂₉ααα 甾烷 20S/(20S+20R),为甾烷异构化成熟度参数;C₂₉ββ/(αα+ββ)为甾烷成熟度参数;Ts/Tm 为 18α(H) -/17α(H)-三降藿烷,为成熟度指标;C₂₉M为C₂₉莫烷;C₃₀H为C₃₀藿烷;Tr 为三环萜烷类化合物;H 为藿烷类化合物;C₃₀G 为伽马蜡烷;TeT 为四环萜烷 核三下亚段 C₂₁-/C₂₂+值在 0.46~2.7 之间,多 数大于 1.0,仅双资 2 井小于 1.0;核三上亚段 C₂₁-/ C₂₂+比值分布在 0.27~1.33,多数小于 1.0,仅个别样 品稍大于 1.0;核二段比值为 1.43。

除核二段原油成熟度相对较低外(OEP 值为 1.11),其余原油样品的奇偶优势均不明显,OEP 值 接近 1.0,反映核三段原油属于成熟原油。

双河油田所有样品的 Pr/Ph 值均小于 0.7,其中 核二段为0.38,核三上亚段在 0.31~0.67,平均为 0.4,核三下亚段在 0.31~0.55,平均为 0.43,均远低 于 1.0,表明其原始母质形成于较强的还原环境。此 外,姥鲛烷、植烷参数分布三角图也得出了同样的结 论,如图3所示,核二段原油样品落入IV区,推测其

4.3 生物标志化合物特征

4.3.1 甾烷

甾烷是原油中最为常见和重要的一类生物标志 化合物,它们的母质主要来源于藻类和高等植物^[1]。原油中甾烷主要包括低碳数甾烷、C₂₇~C₂₉规 则甾烷和重排甾烷、C₂₈~C₃₀ 4-甲基甾烷以及 C₃₀甲 藻甾烷。

从双河油田甾烷化合物组成分析结果来看,规则甾烷是甾烷的主要成分,占甾烷总量在78.28%以上,最大可达94.29%;低碳数甾烷均在6.5%以下; 重排甾烷在4.31%~17.07%之间;几乎不含4-甲基 甾烷;这一特征也反映出双河油田原油的母质沉积 环境为咸水环境。

从 m/z 217 色谱图(图 4)中可以看出,双河油 田原油中 C₂₇~C₂₉规则甾烷主要呈"V"型分布,说明 其母质来源具有陆源高等植物和低等水生生物的双 重性,少数样品呈反"L"型分布,反映了陆源高等植 物占主导地位;此外随深度的增加,孕甾烷和重排甾 烷的相对含量明显增大。从 C₂₇~C₂₉甾烷分布三角 图(图 5)也可以得出同样的结论,即所有样品基本 都集中在 IV 区—混合来源内。反映原油成熟度的 C₂₉αααS/(S+R)和 C₂₉ββ/(αα+ββ)图版(图 6)则 表明核二段属于低熟原油,核三段均为成熟原油,且 核三下亚段的成熟度明显高于核三上亚段,不同层 位原油整体上呈现随深度增加成熟度增高的趋势。

图 4 双河油田典型原油样品甾烷 GC-MS 色谱(m/z 217)

Fig.4 m/z 217 chromatograms showing steranes of typical oil samples from Shuanghe Oilfield

4.3.2 萜烷

对比 m/z 191 色谱图(图 7)可以看出,双河油 田不同层位原油萜烷的整体分布形态差异不明显: 普遍具有高含量 C₃₀藿烷,C₃₁~C₃₄升藿烷含量随碳 数的升高逐渐降低,C₂₄四环萜烷含量较低,C₁₉~C₂₁ 三环萜烷呈"上升型"分布。随着深度的增加,三环 萜烷和伽马蜡烷的相对含量明显升高,这主要是由 于原油成熟度的升高导致藿烷类化合物减少所致。

C₂₄四环萜烷/C₂₆三环萜烷比值普遍较低,均小于 1,其中核二段该值相对较高(0.98),核三上亚段平均 值为0.52,核三下亚段平均值为0.40,同样反映出核

图 6 双河油田原油 C₂₉S/(S+R)和 C₂₉ββ/(αα+ββ)相关图 Fig.6 Plot of C₂₉ββ/(αα+ββ) versus C₂₉S/(S+R) showing the maturities of oils from Shuanghe Oilfield

二段超盐度的沉积环境。其次,核二段和核三段均具 有较高的伽马蜡烷/C₃₀藿烷值(表 2),表明原油母源 沉积环境水体盐度较高,与甾烷得出的结果一致。

成熟度指标 Ts/Tm 值随着深度的增加大体呈现出增大趋势,其中核二段该值最低,为 0.12,反映 其相对较低的成熟度;核三上亚段平均值为 0.62,核 三下亚段平均值为 0.85,反映其相对较高的成熟度 (表 2)。此外,另外两种反映成熟度变化的参数 C₂₉ 莫烷/C₃₀藿烷和三环萜烷/17α(H)-藿烷值随着深 度的增加逐渐增大(表 2),表明双河油田原油的成 熟度随着深度的加深而逐渐增高。

· 971 ·

图 7 双河油田典型原油样品萜烷 GC-MS 色谱图(m/z 191)

Fig.7 m/z 191 chromatograms showing tricyclic terpanes and hopanes of typical oil samples from Shuanghe Oilfield

5 油—源对比

油—源对比理论是根据运移原油的某些组分的 地球化学参数与烃源岩中的残留沥青相比没有太大 变化这一概念建立起来的。这种传承下来的相似性 可以表现在从总体特征到单体化合物比值的参数 上。在对原油地球化学特征的详细描述的基础上, 对双河油田进行油—源对比。

5.1 正构烷烃对比

通过对比双河油田原油和烃源岩的正构烷烃色 谱图(图8)可以看出,核三上亚段原油主要为前峰 型和双峰型,核三下亚段原油主要为前峰型;而核三 上亚段烃源岩主要为双峰型,反应相对较低的成熟 度,核三下亚段烃源岩主要为前峰型,反应相对较高 的成熟度。因此可以初步认为核三下亚段原油主要 来自同层位的烃源岩,而核三上亚段原油则可能为 混源油,核三上亚段和核三下亚段烃源岩均有贡献。

5.2 生物标志化合物对比

通过对比双河油田原油和烃源岩的甾烷和萜烷 类化合物色谱图可以看出,核三段原油与核三段烃 源岩甾烷和萜烷类化合物分布具有普遍相似性: C₁₉、C₂₀、C₂₁三环萜烷呈上升型分布,C₃₀藿烷含量最 高,伽马蜡烷含量较高(图9);C₂₇、C₂₈、C₂₉规则甾烷 呈"V"字型分布,孕甾烷相对含量高于升孕甾烷(图 10)。这表明核三上亚段和核三下亚段原油具有相

and oil samples from Shuanghe Oilfield

图 9 双河油田典型烃源岩和原油萜烷 GC-MS 色谱图(m/z 191) Fig.9 m/z 85 chromatograms showing saturated hydrocarbons of typical source rock and oil samples from Shuanghe Oilfield

and oil samples from Shuanghe Oilfield

似母质来源和沉积环境。但是因为核三上亚段烃源 岩成熟度明显低于核三下亚段烃源岩,所以核三下 亚段烃源岩中三环萜烷、重排甾烷的相对含量明显 高于核三上亚段烃源岩。而核三下亚段原油正好具 备这些特征,因此可以认为核三下亚段原油主要来 源于同层位的核三下亚段烃源岩;核三上亚段原油 中三环萜烷、重排甾烷的相对含量也要高于核三上 亚段烃源岩,但略低于核三下亚段烃源岩,说明核三 上亚段和核三下亚段烃源岩均对其有所贡献。

通过 Pr/Ph、Pr/nC₁₇和 Ph/nC₁₈三角图(图 11) 可以看出,核三段烃源岩均为半咸水—咸水沉积环

境,且核三上亚段沉积时期的水体盐度要略高于核 三下亚段;核三段原油样品也基本投点在Ⅲ区域,因 此仅通过沉积环境不容易划分核三段的油源关系。

从甾烷表示热成熟度图版(图 12)可以清晰看 出,除双资1、双浅1和泌 248 井的3个烃源岩样品 未达成熟外,其余烃源岩和原油样品均已达到成熟, 其中核三上亚段原油成熟度要明显高于核三上亚段 烃源岩,这主要是因其混入高成熟度的核三下亚段 原油所致;而核三下亚段原油与核三下亚段烃源岩 成熟度相同,确定其来源主要为核三下亚段烃源岩。

图 11 双河油田原油和烃源岩 Pr/Ph、Pr/nC₁₇、 Ph/nC₁₈分布三角图

Fig.11Distribution diagram of $Pr/Ph_Pr/nC_{17}$, Ph/nC_{18} ofsource rocks and oils from Shuanghe Oilfield

图 12 双河油田原油和烃源岩 C₂₉S/(S+R)和 C₂₉ββ/(αα+ββ)参数分布 Fig.12 Plot of C₂₉ββ/(αα+ββ) versus C₂₉S/(S+R) showing

the maturities of source rocks and oils from Shuanghe Oilfield

通过选取典型生标参数制作相关性图版可以将 核三段油源关系很好的划分出来。图 13 和图 14 分 别表示伽马蜡烷指数(伽马蜡烷/C₃₀藿烷)、Pr/Ph 和三环萜烷/藿烷的相关性,从中可以清晰看出,核

6 结论

1) 核桃园组三段是双河油田的主力烃源岩,有 机质类型以 Ⅱ₁ 型为主, I 型次之,有机质丰度高 (TOC=1%~5%),其中核三上亚段 TOC 含量要明 显高于核三下亚段,成熟度适中,为一套优质烃源 岩。

2) 双河油田原油主要属于正常原油,饱和烃含量较高,其中核三上亚段原油和核三下亚段原油色 谱图存在一些相似之处:C₁₉、C₂₀、C₂₁三环萜烷均呈上升型分布,伽马蜡烷含量较高,C₂₇~C₂₉规则甾烷 三下亚段原油源自核三下亚段烃源岩,而核三上亚 段原油与核三上亚段烃源岩具有较好的相似性,说 明核三上亚段烃源岩对其贡献度较大。

图 14 双河油田原油和烃源岩伽马蜡烷指数与 三环萜烷/17α(H)-藿烷参数分布

Fig.14 Distribution diagram of tricyclic terpanes $/17\alpha(H)$ -hopane versus $C_{30}G/C_{30}H$ of source rocks and oils from Shuanghe Oilfield

上亚段原油。

4) 双河油田核三下亚段原油主要来源于同层的核三下亚段烃源岩;而核三上亚段原油则为核三上亚段和核三下亚段烃源岩双重贡献下的混源油, 其中核三上亚段烃源岩为主要贡献。

参考文献(References):

- Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history
 [M].UK: Cambridge University Press, 2005.
- [2] 李祖兵, 颜其彬, 罗明高. 非均质综合指数法在砂砾岩储层非 均质性研究中的应用——以双河油田 V 下油组为例[J]. 地质 利林博根 2007(() 92 97

以"V"字型分布为主。不同之处在于:核三上亚段 原油饱和烃色谱图为前峰型和双峰型,重排甾烷和 三环萜烷相对含量较低;而核三下亚段原油饱和烃 色谱图主要为前峰型,重排甾烷和三环萜烷相对含 量较高。 3)核二段原油原始沉积环境为盐湖相的强还

原环境,核三段原油原始沉积环境为半咸水—咸水 的还原—强还原环境。无论是核二段还是核三段原 油,其母质来源均具有陆源高等植物和低等水生生 物的双重性。核三下亚段原油成熟度明显高于核三 科技情报, 2007(6):83-87.

- Li Z B, Yan Q B, Luo M G. Reservoir heterogeneity indication ap-
- plied in researching for heterogeneity of the grail oil : An example of oil group below V in Shuanghe Oilfield [J]. Geological Science and Technology Information, 2007(6):83-87.
- [3] 尹太举,张昌民,陈程,等.建立储层流动单元模型的新方法[J].石油与天然气地质,1999(2):74-79.
 - Yin T J, Zhang C M, Chen C, et al. A new method for founding the model of flow unit reservoirs [J]. OIL & GAS GEOLOGY, 1999(2):74-79.
- [4] 赵跃华, 王敏. 双河油田储层孔隙结构特征分类及影响因素 [J]. 石油学报, 1994(4):31-39.

Zhao Y H, Wang M. Characteristics, classifications and affecting factors of reservoir pore structures in Shuanghe Oilfield [J]. ACTA PETROLEI SINICA, 1994(4):31-39.

- [5] 尹太举,张昌民,赵红静,等.依据高分辨率层序地层学进行 剩余油分布预测[J].石油勘探与开发,2001(4):79-82.
 Yin T J, Zhang C M, Zhao J H, et al. Remaining oil distribution prediction based on high-resolution sequence stratigraphy [J]. Petroleum Exploration and Development, 2001(4):79-82.
- [6] 陆建林,李国强,樊中海,等.高含水期油田剩余油分布研究
 [J].石油学报,2001,22(5):48-52.
 Lu J L, Li G Q, Fan Z H, et al. Residual oil distribution research of high water-cut stage in an oilfield [J]. ACTA PETROLEI SINI-CR, 2001,22(5):48-52.
- [7] 袁向春,杨凤波.高含水期注采井网的重组调整[J].石油勘探与开发,2003(5):94-96.
 Yuan X C, Yang F B. Regrouping adjusting of the producer-injector well-pattern in the high aquifer period of oilfield development [J]. Petroleum Exploration and Development, 2003(5):94-96.
- [8] 张昌民, 尹太举, 张尚锋, 等. 双河油田陆架型扇三角洲的沉积机理及向上变粗层序的成因[J]. 石油与天然气地质, 2005
 (1):99-103.

Zhang C M, Yin T J, Zhang S F, et al. Sedimentary mechanism of shelf-type fan delta and genesis of coarsening-upward sequence in Shuanghe oilfield [J]. OIL &GAS GEOLOGY, 2005(1):99 - 103.

[9] 尹伟, 吴胜和, 林社卿, 等. 双河油田油气成藏机理研究[J]. 石油学报, 2003(5):40-45.

Yin W W, Wu S H, Lin S Q, et al. Study on mechanism of oil and gas accumulation in Shuanghe Oilfield [J]. ACTA PETROLEI SINICA, 2003(5):40-45. [10] 林社卿,杨道庆,夏东领,等.双河油田地球化学特征及成藏
 意义[J].石油天然气学报:江汉石油学院学报,2005(2):162-165.

Lin S Q, Yang D Q, Xia D L, et al. Geochemistry characteristics and significance of hydrocarbon accumulation in Shuanghe Oilfield [J]. Journal of Oil and Gas Technology, 2005(2):162-165.

- [11] 董田,何生,林社卿. 泌阳凹陷核桃园组烃源岩有机地化特征 及热演化成熟史[J].石油实验地质,2013(2):187-194.
 Dong T, He S, Lin S Q, et al. Organic geochemical characteristics and thermal evolution maturity history modeling of source rocks in Eocene Hetaoyuan Formation of Biyang Sag, Nanxiang Basin [J].
 PETROLEUM GEOLOGY & EXPERIMENT, 2013(2):187-194.
- [12] 邱荣华,林社卿,涂阳发. 泌阳凹陷油气成藏特征及勘探潜力 分析[J]. 石油天然气学报:江汉石油学院学报,2005(2):158 -161.

Qiu R H, Lin S Q, Tu Y F. Features of hydrocarbon accumulation and analysis on exploration potential in Biyang depression [J].
Journal of Oil and Gas Technology, 2005(2):158-161.

- [13] Gao X, Zhu S, Zhang W, et al. Analysis of crude oils using gas purge microsyringe extraction coupled to comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry [J]. Fuel, 2016,182:788-797.
- [14] Gao X, Pang L, Zhu S, et al. Gas purge microsyringe extraction coupled to comprehensive two-dimensional gas chromatography for the characterization of petroleum migration[J]. Organic Geochemistry, 2017, 106:30-47.
- [15] Huang H, Zhang S, Su J. Palaeozoic oil-source correlation in the Tarim Basin, NW China: A review [J]. Organic Geochemistry, 2016,94:32-46.

Geochemistry and oil-source rock correlations in the Shuanghe oilfield, Biyang sag, Nanxiang basin

ZHANG Xin-Wen¹, GAO Xuan-Bo^{2,3}, YANG Yun-Fei¹, XIE Chun-An¹, TAN Jing-Juan¹

(1. Exploration & Development Research Institute of Henan Oilfield Company, SINOPEC, Zhengzhou 450000, China; 2. Chongqing Key Laboratory of Complicated Oil and Gas Field Exploration and Development, Chongqing University of Science and Technology, Chongqing 401331, China; 3. School of Petroleum Engineering, Chongqing University of Science and Technology, Chongqing 401331, China;

Abstract: In this paper the authors mainly studied geochemical characteristics and oil-source rock correlations of 28 oil samples from the Shuanghe oilfield based on the gas chromatography-mass spectrometry and biomarkers. The results indicate that the peaks of C_{19} , C_{20} , C_{21} - tricyclic terpanes gradually rise and the peaks of $C_{27} \sim C_{29}$ steranes are characterized by "V" shape of crude oils in the Shuanghe Oilfield. Besides, the concentration of gammacerane is high. The peak shapes of saturates are characterized by "prepeak" and "double peak", and the relative values of diasteranes and tricyclic terpanes are low in oils from upper layer of the Eh_3 member. However, the peak shapes of saturates are characterized by "prepeak" and the relative content of diasteranes and tricyclic terpanes is high in oils from lower layer of the Eh_3 member. For both the oils of Eh_2 member and Eh_3 member, the sedimentary environments are reductive and are sourced from higher plant and aquatic organism. However, the maturity of the oil from lower layer of Eh_3 member is significantly higher than that of the oil from the upper layer of Eh_3 member. In conclusion, the oils from the lower layer of Eh_3 member are mainly sourced from the lower layer of Eh_3 member, and the oils from the upper layer of Eh_3 member are sourced from lower layer of Eh_3 member.

Key words: Shuanghe oilfield; crude oil; biomarkers; gas chromatography-mass spectrometry; oil-source rock correlations

(本文编辑:蒋实)