doi: 10.12029/gc20210602004

宋腾,林拓,李飞,李浩涵,吴海,段轲.2025.中上扬子地区南华系大塘坡组沉积期岩相古地理及对油气成藏的指示[J].中国地质,52(2): 613-630.

Song Teng, Lin Tuo, Li Fei, Li Haohan, Wu Hai, Duan Ke. 2025. Lithofacies paleogeography during the depositional period of the Nanhua System Datangpo Formation and its indications for hydrocarbon accumulation in the Middle and Upper Yangtze Region, South China[J]. Geology in China, 52(2): 613–630(in Chinese with English abstract).

中上扬子地区南华系大塘坡组沉积期岩相古地理及 对油气成藏的指示

宋腾1,2,林拓2,李飞2,李浩涵2,吴海1,段轲3

 (1. 中国石油勘探开发研究院,北京100083;2. 中国地质调查局油气资源调查中心,北京100083;3. 湖北省地质调查院,湖北 武汉430034)

摘要:【研究目的】中上扬子地区在新元古代南华纪中期发育大塘坡组海相黑色含锰碳质页岩,长期以来作为锰矿 层被广泛关注,但对其油气地质特征研究较少。本文从油气地质角度详细阐述了大塘坡组岩相古地理及其对油气 成藏的指示作用,以期为中国南方地区油气调查提供指导。【研究方法】通过野外地质调查和资料收集,采用单井 分析、连井对比、岩相古地理图编制等方法,结合烃源岩特征分析、储层分析等实验测试手段,详细梳理了大塘坡组 沉积特征和油气地质条件,分析了烃源岩特征和潜在油气组合。【研究结果】大塘坡组形成于间冰期,沉积过程受 拉张裂陷活动控制,可划分出 2 大类沉积相、7 类沉积亚相及若干沉积微相,整个沉积期构成一个完整的海侵—高 位—海退沉积旋回;大塘坡组最具油气资源潜力的相带为局限陆棚亚相和潟湖亚相,主要分布在大塘坡组一段,有 机地球化学指标特征好,为优质烃源岩。【结论】大塘坡组一段具有良好的生烃潜力和页岩气发育潜力,松桃、花 垣、秀山、湘潭、鹤峰等地区具有页岩气发育有利条件,为潜在页岩气发育区。以大塘坡组为烃源岩发育多类油气 成藏组合, 渝黔湘交界的秀山、松桃、花垣地区源储配置条件较好,为潜在常规油气发育区。

关键 词:页岩气;新元古界;大塘坡组;岩相古地理;烃源岩;成藏组合;油气勘查工程;中国南方

创 新 点: 阐述了油气调查新层系岩相古地理和成藏机制: (1)系统梳理了南华系大塘坡组剖面和钻孔资料, 明确 了具有油气资源潜力的沉积相带; (2)分析了大塘坡组烃源岩条件和页岩气发育潜力, 指出了油气调查 方向。

中图分类号: TE121.3 文献标志码: A 文章编号: 1000-3657(2025)02-0613-18

Lithofacies paleogeography during the depositional period of the Nanhua System Datangpo Formation and its indications for hydrocarbon accumulation in the Middle and Upper Yangtze Region, South China

SONG Teng^{1,2}, LIN Tuo², LI Fei², LI Haohan², WU Hai¹, DUAN Ke³

(1. Research Institute of Petroleum Exploration & Development, Beijing 100083, China; 2. China Geological Survey & Oil and Gas Survey, Beijing 100083, China; 3. Hubei Geological Survey, Wuhan 430034, Hubei, China)

基金项目:中国地质调查局项目(DD20230752、DD20240048)资助。

作者简介:宋腾,男,1988年生,高级工程师,主要从事页岩气地质调查和选区评价工作; E-mail: songteng@mail.cgs.gov.cn。

http://geochina.cgs.gov.cn 中国地质, 2025, 52(2)

收稿日期: 2021-06-02; 改回日期: 2022-03-30

Abstract: This paper is the result of oil and gas exploration engineering.

[Objective] The marine black manganese-bearing carbonaceous shale of the Datangpo Formation, widely distributed in the mid-Neoproterozoic Nanhua strata of the Middle-Upper Yangtze Region, South China, has been extensively studied as a manganese deposit but remains poorly investigated regarding its petroleum geological characteristics. This study systematically analyzes the lithofacies paleogeography of the Datangpo Formation and evaluates its implications for hydrocaron accumulation, providing critical insights for guiding petroleum exploration in the southern China. [Methods] Through field surveys and comprehensive data synthesis of the Datangpo Formation, we systematically evaluated hydrocarbon conditions, source rock geochemistry, and reservoir-caprock assemblage, especially lithofacies and paleogeography. This integrated approach combined individual well log interpretation, multi-well correlation analysis, and lithofacies paleogeographic with advanced analytical techniques including organic geochemical testing, petrophysical characterization, and reservoir evaluation. [Results] The Datangpo Formation developed during an interglacial period, with its depositional architecture constrained by extensional riftdynamics. Sedimentary facies within the formationare classified into two principal types, seven subcategories and multiple microfacies. The sequence comprises a complete transgressive-highstand-regressive cycle. Hydrocarbon-prospective facies are limited shelf subfacies and lagoon subfacies, predominantly occurring in the first member. These intervals exhibit favorable organic geochemical index, and constitute potential source rock horizons. [Conclusions] The first member of the Datangpo Formation exhibits significant hydrocarbongeneration potential and viable shale gas prospects. Strategic areas including Songtao, Huayuan, Xiushan, Xiangtan and Hefeng, located at the confluence of Hunan, Chongqing and Guizhou Province, demonstrate favorable geological conditions for shale gas exploitation. This unit serves as a competent source rock capable of forming multiple prospective hydrocarbon reservoir assemblages. Notably, The Xiushan-Songtao-Huayuan sector along the tri-province boundary of Chongqing, Guizhou, and Hunan exhibits optimal source-reservoir coupling configuration, indicating promising targets for conventional petroleum exploration.

Key words: shale gas; Neoproterozoic; Datangpo Formation; lithofacies paleogeography; source rock; accumulation assemblage; oil and gas exploration engineering; South China

Highlights: This article elucidated the lithofacies palaeogeography and reservoir forming mechanism of new strata for oil and gas survey through two principal methodologies: (1) The outcrop profiles and borehole data of the Datangpo Formation of the Nanhua System are systematically sorted out, and the sedimentary facies belts with oil and gas resource potential are clarified; (2) The conditions of the hydrocarbon source rocks and shale gas potential of the Datangpo Formation are analyzed, and the direction of oil and gas investigations is pointed out.

About the first author: SONG Teng, male, born in 1988, senior engineer, engaged in shale gas geological survey and regional evaluation; E-mail: songteng@mail.cgs.gov.cn.

Fund support: Supported by the projects of China Geological Survey (No.DD20230752, No.DD20240048).

1 引 言

元古宇是近年来全球油气勘查和研究的热点 之一。中国三大克拉通均发育元古宇烃源岩,其中 扬子克拉通主要发育中元古界神农架群郑家垭组、 新元古界南华系大塘坡组和震旦系陡山沱组3套 烃源岩,三者在构造演化、沉积环境、成烃特征等 方面具有诸多相似之处(汪泽成等,2014;赵文智等, 2019)。目前中国仅在鄂西宜昌、黔东南丹寨等地区 针对震旦系陡山沱组开展了油气调查和研究,并获 得页岩气发现,证实该地层是一套良好的烃源岩和 页岩气层(翟刚毅等,2017;汪泽成等,2019;淡永等, 2023),而对大塘坡组和郑家垭组的调查研究较为 匮乏,制约了进一步的油气资源评价和有利区优选。

大塘坡组在扬子克拉通东南缘广泛发育,长期 以来被作为锰矿产层广泛关注,相关研究多集中在 锰矿成因与成矿模式(周琦等,2013;杜远生等, 2015)、锰矿地球化学特征与形成环境(朱祥坤等, 2013;马志鑫等,2016;赵志强等,2019)等固体矿产 领域,而对其油气地质条件和资源潜力则缺乏系统 的研究认识。本文以中上扬子地区南华系大塘坡 组为研究对象,从岩相古地理特征角度探究其油气 成藏条件,以期为后续调查研究提供依据。

2 地质背景

新元古代早期,在罗迪尼亚(Rodinia)超大陆裂

解及华南地块区域伸展活动背景下,扬子克拉通东 南缘经历了幕式裂陷过程,形成新元古代—早古生 代华南裂谷系(图1),内部发育多个次级裂谷盆地, 整体呈北东—南西向条带状分布(王剑等,2001, 2012; Wang et al., 2006;李献华等,2008)。与此同 时,全球范围内至少发生了2次大规模的"冰川事 件",分别发生在距今约780 Ma 的 Sturtian 冰期和 约654 Ma 的 Marinoan 冰期(Evans, 2000; Lund et al., 2003),在扬子地区分别称为"长安冰期"和"南 沱冰期"。大塘坡组形成于这两次冰期之间的间冰 期,为一套受拉张裂陷活动控制的含锰碳酸盐岩和 黑色碳质页岩陆源碎屑沉积组合。

3 地层特征

3.1 地层定义及分布

大塘坡组最初命名于黔东北地区,以贵州松桃 两界河大塘坡剖面为标准地层,定义为"一套碳锰 质和细屑沉积,以底部黑色碳质岩或锰质岩与下伏 杂砂岩分界"(尹崇玉等,2006)。通常分为两段或 三段,其中下段以黑色碳质页岩为主,夹菱锰矿及 凝灰岩,局部夹有白云岩透镜体,含有藻类、菌类和 凝源类化石,富含有机质和黄铁矿;中段、上段为粉 砂质页岩、粉砂质黏土岩,颜色较浅,碳、锰含量低。

大塘坡组主要分布在湘、黔、渝、鄂等地区,与 上下地层接触关系见图 2。在桂北地区,相变为一 套上部含砾的岩屑长石石英砂岩、含砾石英砂岩, 对应富禄组上段(陈建书等,2016)。在湘中地区,因 为锰矿主产层,被称为湘锰组。在黔中地区,相变 为一套紫红色粉砂岩和泥岩河湖相沉积,称为马路 坪组(张予杰等,2020)。

3.2 地层出露情况

南华系大塘坡组在渝、黔、湘相邻地区出露较 多(图 3,图 4),为研究提供了较好的资料基础。

4 沉积特征与岩相古地理

4.1 沉积体系及有利相带特征

大塘坡组沉积期,研究区在拉张断裂作用下形 成的"垒堑相间"格局之上,充填了一套陆源碎屑沉

图 1 扬子及周边地区新元古代裂谷分布图(修改自万天丰, 2011;管树巍等, 2017;杜远生等, 2018) I—鄂湘黔桂裂谷系; II—扬子北缘裂谷系; III—川中裂谷系; IV—康滇裂谷系

Fig.1 Distribution map of Neoproterozoic rift valleys in Yangtze and surrounding areas (modified from Wan Tianfeng, 2011; Guan Shuwei et al., 2017; Du Yuansheng et al., 2018)

I-Hubei-Hunan-Guizhou-Guangxi Rift System; II-Northern Yangtze Rift System; III-Central Sichuan Rift System; IV-Tibet-Yunnan Rift System

X	冰期		年代	代也是分区								
215			/Ma	鄂西	渝东	黔东	黔中	户	湘西	湘中	桂北	
震旦 系			(25	陡山沱组 金家洞组						同组		
	南沱冰期		- 635	南沱组				南沱组	洪江	洪江组		
南		大塘坡 间冰段	- 634 - 670 - - - 725	大塘坡组			马 湘4		湘镐	鉬		
华	富禄回	古城 冰段			古城组	千子 门组	铁丝	路差	登	东山 峰组		
×.	间冰	烂阳间冰段				坳组	坪	I		富裕	录组	
211	期	龙家冰段 莲沱		莲沱	山川川 :组	—————————————————————————————————————	组纠	组	渫水		4	
		间小权		nonnon	~~~~~	1737		لمم	们组			

河组

板溪群/下江群

图 2 扬子地区新元古代末期地层划分及对比图 Fig.2 Stratigraphic division and correlation of the Late Neoproterozoic in Yangtze Region

积物,形成了隆起和凹陷相间的岩相古地理格局。 大塘坡组整体可划分出2大类沉积相、7类沉积亚 相及若干沉积微相,整个沉积期构成一个完整的海 侵—高位—海退沉积旋回,其中海侵体系域(TST) 对应大塘坡组下段(一段),高位体系域(HST)对应 大塘坡组中、上段(二段、三段)。

青白

口系

长安冰期

780

花岗岩

界

新 元 古 界

邻近古陆或古岛的陆缘地区发育滨岸相,根据 岩石组合、沉积构造、水体能量、古地貌等特征,可 进一步划分为海滩、潮坪、潟湖、障壁岛等亚相 (图 5,表1)。其中,潟湖多由陆地边缘断陷深度较 小的地堑发展演化而成,主要发育含碳的粉砂质泥 岩、钙(泥)质粉砂岩,局部夹透镜状菱锰矿,是滨岸 相带内油气潜力较好的亚相类型。

离岸较远的陆架区发育陆棚相,以浅水陆棚为 主。受同沉积断裂活动影响,局部地区垒堑分异显 著,断陷深度较大的地堑区逐渐演化为局限陆棚, 水体深度大,沉降幅度大,水体循环受到内部隆起 和边缘隆起限制,形成了低能、阻滞、闭塞的沉积环 境。由于同沉积断裂具有阶梯状沉降特征,常发育 多个沉积中心,并在沉积中心(盆洼)处发育含锰碳 质页岩和菱锰矿,具有"碳锰共存"的沉积特征,油 气发育潜力较好。

4.2 沉积相与代表剖面

4.2.1 古陆(岛)

大塘坡组沉积缺失,表现为南华系上统南沱组 冰碛岩与下统莲沱组(鄂西)、清水江组(黔东)或澄 江组(黔中)呈假整合接触,存在沉积间断。古陆主 要发育在鄂西、渝东南、黔中一带,古岛主要发育在梵 净山、黔阳、吉首等地区,为大塘坡组沉积物源区。 4.2.2 海滩及障壁岛

长安组

高涧群

/丹州群

无障壁岛遮挡、海水循环良好的古陆、古岛周 缘及障壁岛外缘多发育海滩相,沿海岸线呈带状分 布,可分为后滨、前滨、临滨等亚相。由陆向海依次 发育含砾砂岩、中细砂岩、石英砂岩、粉砂岩等岩 石类型,粒度由粗变细,常见交错层理、冲洗层理、 水平层理,局部可见波痕及暴露构造,反映水位变 化频繁。

4.2.3 潮坪

受陆地和障壁岛围限的平缓海岸多发育潮坪 相,可进一步划分为以滨岸沼泽为主的潮上带、发 育脉状层理的粉砂岩与粉砂质泥岩互层的潮间带, 及以粗粉砂夹泥质沉积为主的潮下带,反映水体能 量由弱到强的变化。

4.2.4 潟湖

潟湖多由陆地边缘断陷深度较小的地堑发展 演化而成,主要发育含碳的粉砂质泥岩、钙(泥)质 粉砂岩,局部夹透镜状菱锰矿,球状蓝藻等广盐度 浮游生物繁盛,发育水平层理和小型韵律层理,局 部可见弱风暴搅动的痕迹,整体为循环不畅的低能 还原环境。沉积范围受海平面和沉积物堆积速率 影响较大,常出现潮坪—潟湖环境的频繁变化。典 型剖面为长阳古城大塘坡组二段(谭满堂等,2009),

图 3 中上扬子地区新元古界出露地区及剖面点分布图

剖面(钻孔)名称:1—酉阳獠牙盖;2—秀山小茶园;3—秀山孝溪;4—秀山笔架山;5—秀山兰桥;6—松桃大塘坡;7—松桃杨家湾;8—松桃寨 英;9—江口桃映;10—万山石竹溪;11—新晃板桥;12—洪江托口;13—神农架蚂蟥沟;14—秭归青林口;15—长阳流溪;16—长阳杨树坳; 17—鹤峰走马;18—沅陵军大坪;19—桃源马金洞;20—安化龙塘;21—宁乡菜花田;22—湘锰锰矿;23—江口堰溪;24—印江永义;25—松桃石 塘锰矿;26—松桃道陀;27—花垣两河乡;28—花垣民乐;29—古丈鬼溪;30—古丈烂泥田;31—遵义松林六井;32—开阳马路坪;33—余庆朵 丁;34—石阡窑上;35—石阡龙家屋基;36—镇远松柏洞;37—剑河八卦河;38—湘西黔阳;39—怀化新路河

Fig.3 Distribution map of Neoproterozoic outcropping areas and profile points in the Middle and Upper Yangtze Region
Profile (drill) name: 1–Liaoyagai, Youyang; 2–Xiaochayuan, Xiushar, 3–Xiaoxi, Xiushar, 4–Bijiashan, Xiushar, 5–Lanqiao, Xiushar, 6–Datangpo,
Songtao; 7–Yangjiawan, Songtao; 8–Zhaiying, Songtao; 9–Taoying, Jiangkou; 10–Shizhuxi, Wanshar, 11–Banqiao, Xinhuang; 12–Tuokou,
Hongjiang; 13–Mahuanggou, Shennongjia; 14–Qinglinkou, Zigui; 15–Liuxi, Changyang; 16–Yangshuao, Changyang; 17–Zouma, Hefeng;
18–Jundaping, Yuanling; 19–Majindong, Taoyuan; 20–Longtang, Anhua; 21–Caihuatian, Ningxiang; 22–Manganese ore, Ningxiang; 23–Yanxi,
Jiangkou; 24–Yongyi, Yinjiang; 25–Shitang manganese ore, Songtao; 26–Daotuo, Songtao; 27–Lianghe, Huayuan; 28–Minle, Huayuan; 29–Guixi,
Guzhang; 30–Lannitian, Guzhang; 31–Songlin Well6#, Zunyi; 32–Maluping, Kaiyang; 33–Duoding, Yuqing; 34–Yaoshang, Shiqian; 35–Longjiawuji, Shiqian; 36–Songbaidong, Zhenyuan; 37–Baguahe, Jianhe; 38–Qianyang, Xiangxi; 39–Xinluhe, Huaihua

如图 6 所示。障壁岛为邻近滨岸的地形高部位,常 与潟湖共同发育,其内缘主要发育潮坪相,外缘则 以海滩相为主。

4.2.5 浅水陆棚

可分为浅滩、平原等亚相。浅滩亚相紧邻滨岸

分布,发育细砂岩、石英砂岩、岩屑石英砂岩等岩石 类型,碎屑颗粒磨圆度高,常见大型交错层理、浪成 层理,水体能量较强。平原亚相地形平坦、水体相 对深,发育泥晶灰(云)岩、含砂质灰(云)岩,横向上 常过渡为粉砂质泥岩、砂质页岩、含钙粉—细砂岩,

图 4 中上扬子地区大塘坡组露头及岩心特征

a—大塘坡组一段碳质页岩,夹于南沱组与古城组冰碛砾岩之中,厚度小于 5 m,局限陆棚相,神农架宋洛蚂蟥沟; b—贵州松桃道陀 ZK001 钻 孔大塘坡组一段岩心,局限陆棚相;①黑色碳质页岩,见星点状黄铁矿;②黑色、钢灰色条带状菱锰矿;③黑色碳质页岩、泥岩、硅质岩;④黑色 块状菱锰矿夹碳质页岩,见星点状黄铁矿;⑤黑色含锰碳质页岩;⑥黑色块状菱锰矿夹黑色碳质页岩,见星点状黄铁矿;⑦黑色碳质页岩; c—大塘坡组一段,粉砂岩发育脉状层理,潮坪相,贵州江口堰溪; d—大塘坡组一段,细砂岩中发育交错层理,浅水陆棚相,汉中钢厂; e—大塘 坡组一段,碳质页岩中见宏体化石,局限陆棚相,神农架宋洛蚂蟥沟; f—大塘坡组一段含砾粉砂岩,海滩及障壁岛相,贵州松桃西溪堡(b 图据 安正泽等, 2014; c、f 图据张予杰等, 2020; d、e 图据张高冲, 2020)

Fig.4 Characteristics of outcrops and cores of the Datangpo Formation in the Middle and Upper Yangtze Region a-Carbonaceous shale of the first member of the Datangpo Formation, sandwiched between the moraine conglomerate of the Nantuo Formation and Gucheng Formation, with a thickness of less than 5 m, limited shelf facies, Songluo Majigou, Shennongjia; b-ZK001 of Songtao Daotuo manganese ore, Guizhou; The core of the first member of the Datangpo Formation, limited shelf facies; ①The black carbonaceous shale showed star-shaped pyrite; ②The black and steel gray banded rhodochrosite; ③Black carbonaceous shale, mudstone, siliceous rock; ④Black massive rhodochrosite with carbonaceous shale, with star-shaped pyrite; ⑤Black manganese-bearing carbonaceous shale; ⑥Black massive rhodochrosite with black carbon shale and star-shaped pyrite; ⑦Black carbonaceous shale; c-The first member of the Datangpo Formation, siltstone developed vein bedding, tidal flat facies, Yanxi, Jiangkou, Guizhou; d- The first member of Datangpo Formation, with cross bedding developed in fine sandstone, shallow-water shelf facies, Hanzhong Steel Works; e-The first member of Datangpo Formation, macrofossils are seen in carbonaceous shale, limited shelf facies, Mahuanggou, Songluo, Shennongjia, Hubei; f-The first member of the Datangpo Formation, gravel-bearing siltstone, beach and barrier island facies,

Xixibao, Songtao, Guizhou (Fig.4b after An Zhengze et al., 2014; Fig.4c, f after Zhang Yujie et al., 2020; Fig.4d, e after Zhang Gaochong, 2020)

为开阔、安静的沉积环境。典型剖面为松桃普 觉 ZK1408 钻孔大塘坡组二段(齐靓等, 2015), 如 图 7 所示。

4.2.6 局限盆地

多由远离陆地的断陷深度较大的地堑发展演 化而成,伴生的同沉积断裂具有阶梯状沉降特征,

			表 1 中上扬子地区大塘坡组沉积体系划分表			
	Table 1 S	edimentary	v system classification of Datangpo Formation in Middle a	nd Upper Yangtze Region		
相	亚相	微相	岩石组合	沉积构造	水体能量	
		后滨	中粗砂岩、含砾砂岩	小型交错层理	低能	
	海滩及障壁岛	前滨	含砾中砂岩、石英砂岩	交错层理、冲洗层理	中高能	
		临滨	中细砂岩、粉砂岩	交错层理、水平层理	中低能	
		潮上带	泥岩、粉砂质泥岩、盐岩	暴露构造	低能	
滨岸	潮坪	潮间带	粉砂岩、粉砂质泥岩、砂质泥岩	脉状层理、波状层理、 透镜状层理	中低能	
		潮下带	粗粉砂岩夹泥岩、中粗砂岩	大型交错层理	中高能	
	潟湖	/	粉砂质泥岩、钙(泥)质粉砂岩、 含碳锰粉砂质泥岩、菱锰矿	水平层理,小型韵律层理	低能	
		浅滩	细砂岩、石英砂岩、岩屑石英砂岩	大型交错层理、浪成层理	中高能	
	浅水陆棚	平原	砂质页岩、粉砂质泥岩、含钙粉—细砂岩、含砂灰(云)岩、 泥晶灰(云)岩	小型交错层理、水平层理	中低能	
er i tren		斜坡	含粉砂碳质页岩、含锰碳质页岩、 含锰云(灰)岩	牵引流构造	低能	
陆棚	向限陆棚	盆洼	菱锰矿、碳质页岩、含锰碳质页岩、沉凝灰岩	水平纹层、页理		
		内隆	含锰碳粉砂质页岩、含锰白云岩	水平层理		
	-レT 欧 to	障壁砂坪	中细砂岩、粉砂岩	交错层理、水平层理	山紅松	
	小下陲起	障壁云坪	含砾白云质砂岩、含砾砂质白云岩、含砂白云岩	水平层理	甲瓜肥	
	深水陆棚	/	钙质泥岩、硅质泥岩	浊流构造	低能	

系	统	组	段	层号	深度 /m 岩性	岩性描述	亚相	相	沉积 体系
	上统	南沱组	4		灰绿色冰碛砾岩		大陆 冰河	冰川	
			二段	3	30	灰黑色薄层含锰页岩		潟湖	
				2		黑色菱锰矿层,间夹黏土岩]		
南华系	中统	大塘坡组	一段	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	灰色薄层状粉砂岩与粉砂质黏土岩韵律互层	潮间带	潮坪	障壁海 岸
		古城组			$\begin{bmatrix} \bullet \bullet \circ \bullet \bullet \\ \hline \hline \\ \hline \\ 70 \\ \hline \end{bmatrix}$	灰绿色含砾泥质中砂岩		大陆 冰河	冰川

图 6 长阳古城大塘坡组沉积相剖面

Fig.6 Sedimentary facies profile of the Datangpo Formation in Gucheng section, Changyang

发育多个沉积中心。水体深度大,沉积沉降幅度 大,水体循环受内部隆起和边缘隆起限制,为低能、 阻滞、闭塞的沉积环境。沉积中心(盆洼)多发育含 锰碳质页岩和菱锰矿,具有"碳锰共存"的沉积特征,外围(斜坡)逐渐相变为含粉砂的碳质页岩或白云岩,形成平面上大致对称的岩性组合分带。局限

质

2025年

图 7 松桃普觉 ZK1408 钻孔大塘坡组沉积相剖面 Fig.7 Sedimentary facies profile of the Datangpo Formation in Pujue ZK1408 borehole, Songtao

盆地的发育整体受控于区域构造拉张活动,在平面 上呈近北东—南西向离散分布。典型剖面为松桃 普觉 ZK1408 钻孔大塘坡组一段(齐靓等,2015),如 图 7 所示。

4.2.7 水下隆起

常紧邻局限盆地分布,由地垒发展演化而成。 沉积厚度薄(仅1~3m),矿物成分复杂,常见云坪、 砂坪等沉积序列。典型剖面松桃沿寨沟大塘坡组 一段(张予杰等,2020),如图8所示。

4.2.8 深水陆棚

多分布在水下隆起外侧,地势平缓,为低能深 水环境,主要发育钙质泥岩、硅质泥岩,多具水平层 理,常见浊流构造。

4.3 沉积相横向对比

对研究区资料点进行了沉积相划分对比,编制 了南北向(A—A'、B—B')、东西向(C—C'、D—D') 4条对比剖面,如图 9~图 12 所示(剖面位置见图 3)。

剖面对比显示,大塘坡组在渝东南酉阳西部 (图 9)、鄂西秭归—长阳(图 10)、湘西北沅陵—古 丈(图 10,图 11)、黔中遵义—余庆—石阡(图 12)沉 积缺失,可见南华系上统南沱组冰碛岩与下统莲沱 组(鄂西—渝东)、渫水河组(湘西北)或澄江组(黔 中)呈不整合接触,表明上述地区在大塘坡组沉积 期存在沉积间断,应为古陆或古岛等古地貌高地。

宋腾等:中上扬子地区南华系大塘坡组沉积期岩相古地理及对油气成藏的指示

系	统	组	段	深度 /m	岩性	岩性描述	亚相	相	沉积 体系		
		大塘坡组	二段		10 11 00 40 10 11 10 10 00 10 11 00 10 11 00 11 11 00 12 11 11 14 11 11 15 11 11 16 11 11 17 10 00	粉砂岩	平原	浅水陆棚			
					0 0 	含锰粉砂质泥岩					
				-2	· -·	火山凝灰岩	坪	-	陆		
	中统					砂质白云岩、泥晶白云岩					
			F (一 段			含砾砂质白云岩					
南华						砂质白云岩、泥晶白云岩	障		,棚		
系				- 4	N N	白云质长石岩屑砂岩	日立	隆			
						含砾砂质白云岩	- ^生 砂 坪	起			
								•• - •• •• •• •• •• •• •• - •• •• •• - •• •• •• - •• •• •• - •• •• •• - •• •• •• - •• ••	含锰变质粉砂岩		
		铁 丝 坳 组	失			砂质板岩	临	滨	冰水		
						粉砂质板岩	浜	厈	i h击 彻		
									板岩		

图 8 松桃沿寨沟剖面大塘坡组沉积相剖面 Fig.8 Sedimentary facies profile of Datangpo Formation in Yanzhaigou section, Songtao

在渝东南的酉阳—秀山(图 9)、鄂西北神农架 (图 10)、鄂西长阳(图 10)、湘西北桃源—宁乡 (图 11)、黔东江口—印江—石阡—镇远(图 12)等 地区发育潮坪—潟湖相,指示海陆交界线;在秀山 孝溪(图 9)、秀山兰桥(图 11)等地发育障壁岛,沉 积相和沉积厚度均有变化。在湖北鹤峰(图 10),湖 南湘潭(图 10),贵州松桃(图 11)、湖南花垣(图 11) 等地区发育局限陆棚,常见富锰--富碳岩石组合, 生烃条件较好;沉积活动受到同沉积断裂活动控 制,地层厚度大;内部常见斜坡、盆洼和隆起的分 异,如松桃大塘坡—杨家湾—寨英地区(图 11)。在 黔东北江口—铜仁东南(图9)、湘西北安化南部 (图 10),水体逐渐变深,为浅水陆棚—深水陆棚环 境。天柱—怀化隆起之上发育古岛,常见沉积缺 失,如剑河八卦河(图 12)、洪江托口剖面(图 12); 其东侧发育局限陆棚,局部具有碳锰聚集,如怀化

新路河剖面(图 12)。

4.4 岩相古地理及其演化

4.4.1 大塘坡组一段沉积特征

大塘坡组一段沉积期是发生广泛海侵和拉张 活动活跃的时期,沉积环境受拉张断裂活动控制, 可划分为潮坪—潟湖—浅水陆棚—局限陆棚—深 水陆棚等单元(图 13)。在黔东—渝东南地区,海陆 分界线沿瓮安—石阡—印江—酉阳一线展布,在酉 阳—秀山地区形成局限海湾,沉积物以潮坪—潟湖 相的粉砂岩和泥岩为主,向东、南水体渐深。在鄂 西地区,中上扬子之间的海槽已初步形成,沿永 顺—桑植—五峰—长阳—巴东—神农架一线贯通 南北,部分地区深入古陆内部,在长阳附近形成指 状展布的潟湖。在湘西北地区,海岸线大致沿东西 向分布,滨岸多发育海滩,局部地区发育局限海湾。

局限陆棚和潟湖为碳锰富集相带,分布主要受

http://geochina.cgs.gov.cn 中国地质, 2025, 52(2)

http://geochina.cgs.gov.cn 中国地质, 2025, 52(2)

623

图 13 中上扬子地区大塘坡组一段沉积期岩相古地理图

Fig.13 Lithofacies and paleogeography map of the first member of Datangpo Formation in the Middle and Upper Yangtze Region

拉张断裂控制,在平面上呈近北东—南西向展布, 主要分布在渝黔湘交界的秀山—花垣—松桃地区 以及铜仁—吉首一线,另外在湘西绥宁—洪江—溆 浦、娄底—湘潭,鄂西—渝东鹤峰、建始—巴东、神 农架、城口等地区也有分布。沉积厚度在地垒区 (潮坪、障壁岛、水下隆起等)一般为 5~10 m,在地 堑区(局限陆棚、潟湖等)可大于 30 m,一般为 10~20 m。

4.4.2 大塘坡组二段沉积特征

大塘坡组二段沉积期,构造活动逐渐减弱,海 平面处于缓慢脉动式下降阶段,沉积作用以填平补 齐为主。沉积环境可划分为滨岸—潮坪—潟 湖—浅水陆棚—深水陆棚等单元(图 14)。早期的 局限陆棚内水体逐渐变浅,沉积相以浅水陆棚 相—潟湖相为主,充填沉积纹层状粉砂质页岩、厚 层粉砂质黏土岩序列,生烃条件变差。沉积厚度横 向变化大,在地垒区(潮坪、障壁岛、水下隆起等)为5~ 100 m,在地堑区(局限陆棚、潟湖等)厚度可大于 400 m,一般为100~300 m。

5 对油气成藏的指示

中国含油气盆地的勘探实践表明,不同地质时 代的岩相古地理类型控制了有效烃源岩、储层和盖 层的分布和组合,沉积演化的多样性控制了油气资 源的分布和油气藏的类型(朱筱敏等,2004)。大塘 坡组沉积期具有鲜明的堑垒分异结构,形成了特殊

图 14 中上扬子地区大塘坡组二段沉积期岩相古地理图

Fig.14 Lithofacies and paleogeography map of the second member of Datangpo Formation in the Middle and Upper Yangtze Region

的岩相古地理格局,可为油气有利区预测提供良好 指示作用。优质烃源岩主要分布在局限陆棚、潟湖 等相带内,具有较好的有机地球化学特征。在地垒 区易于形成优质储层,具有良好的源储配置条件。

5.1 烃源岩特征

松桃、秀山、神农架、长阳等潟湖、局限陆棚相 样品分析测试结果表明(表 2),大塘坡组碳锰质页 岩有机显微组分以沥青组和腐泥组为主,干酪根碳 同位素值-32.9‰~-32.4‰,为典型的 I 型腐泥型 干酪根,生烃物质基础好。残余有机碳含量高,可 达 10% 以上,一般在 3%~4%,为优质烃源岩。生烃 潜量(*S*₁+*S*₂)普遍偏低,反映已经历了高演化生烃阶 段。生烃演化史表明,大塘坡组生油高峰期—生湿 气阶段为加里东期,在印支期后进入高成熟期,现 今处于过成熟期(谢增业等,2017)。实测成熟度 *R*。普遍较高,最高可达4%以上,但在局部地区仍 可见到不到3%的低值(张健等,2015;王新贵等, 2015),表明部分地区仍具有良好的生烃潜力。大 塘坡组原始生烃条件与区域上覆的陡山沱组、牛蹄 塘组类似(表2),但经历的生烃演化时间更长,残留 生烃潜力受到一定限制。

5.2 潜在油气成藏组合

大塘坡组上下地层均为冰期形成的杂砾岩、含砾砂岩或砂泥岩,颗粒直径大、磨圆度差,岩石物性较好,为良好潜力储层。同时,大塘坡组一段含碳页岩孔隙度值可达 5% 左右(王新贵等, 2015),具有页岩气赋存的空间。镜下分析表明,大塘坡组孔隙以无机矿物孔、缝为主,主要为矿物粒间孔缝

实测

实测

Table	2 Organic geoc	hemical characte	ristics of the Datang comparison with o	oo Formation in t ther organic shale	he Middle and s	l Upper Yangtzo	e Region and
地层	地区	有机碳/%	生烃潜量 S ₁ +S ₂ /(mg·g ⁻¹)	成熟度 <i>R</i> o/%	干酪根 <i>δ</i> ¹³ C/ ‰	沉积相	来源
	松桃寨英	3.05~6.29 (4.32)	0.001~0.051 (0.013)	2.19~2.47 (2.34)	-32.9 ~ -32.4	局限陆棚	
+	秀山千子门	0.43~4.47 (2.19)	0.005~0.029 (0.014)	2.84	/	潮坪—潟湖	谢增业等,2017
塘坡	秀山小茶园	3.47~8.5 (4.72)	0.046~0.096 (0.016)	3.09	/	潟湖—局限陆棚	
坂组	秀山大、小茶园	0.25~15.86 (4.80)	0.002~0.043 (0.014)	2.02~2.37	-33.8 ~ -33.9	潟湖—局限陆棚	张健等,2015
	神农架宋洛	4.55	0.17	3.37	-28.41	浅水陆棚——局限 陆棚	实测
RL 1 33 / P		0.5~6.1	0.01~1.54				

(0.23)

0.03~0.81

(0.34)

1.9~3.5 (3.3)

2.5~3.2 (2.9)

表 2 中上扬子地区大塘坡组有机地球化学特征及其对比

注:数据格式为:最大值~最小值(平均值)。

(2.1)

 $1.5 \sim 5.0$

(3.6)

宜昌长阳

宜昌长阳

(图 15a)、粒缘缝(图 15a)、溶蚀孔(图 15b),局部仍 可见到保存较好的有机质孔(图 15c、d)。南华系之 上覆盖了陡山沱组厚层碳质页岩/含碳云岩,为良好 **烃源岩和盖层。南华纪持续活动的同沉积断裂贯** 通上下,为油气运移提供了良好通道。大塘坡组还 可能直接接触花岗岩基底,具有氦气来源(张健等, 2015)。上扬子地区的勘探实践表明,南华系裂谷 的垒堑结构可以控制上覆震旦系丘滩体沉积、岩溶 储集层和烃源岩的发育,对油气藏的形成具有一定 控制作用,震旦系—寒武系高产井主要分布在南华 系裂谷地垒之上的丘滩体中,产量大于10万方/天 的高产井中有 75% 位于地垒区, 20 口测试产量大 于 50 万 m³/d 的钻井全部位于地垒区(魏国齐等, 2018)。因此,研究区可能发育以大塘坡组为烃源 岩的多类油气成藏组合,具有良好的油气勘探 潜力(图 16)。

5.3 有利区预测

由于大塘坡组地层年代较老,生油高峰期—生 湿气阶段为加里东期,在印支期后进入高成熟期, 现今处于过成熟期,因此应重视大塘坡组烃源岩形 成的古油藏或分散液态烃的"二次生烃"作用对后 期生烃的贡献。研究表明,液态烃裂解生气具有时 间晚、散失量少、成藏有效性高、资源潜力大等特 点(赵文智等,2015),加里东期之前的古隆起、古斜 坡应是大塘坡组形成的古油藏或分散液态烃的有 利聚集区。渝黔湘交界的秀山、松桃、花垣地区在 大塘坡组沉积期具有鲜明的垒堑分异构造格局,地 堑与地垒区沉积差异大,地堑区长期处于沉积低部 位,发育厚度较大的大塘坡组一段优质烃源岩,并 叠加了早震旦世陡山沱组、早寒武世牛蹄塘组优质 烃源岩沉积。其地垒区长期处于沉积高部位,为古 油藏或分散液态烃的有利聚集场所,并可能控制了 晚震旦世灯影组藻云岩的沉积,源储配置条件较 好。其西侧靠近黔中古隆起,在加里东末期开始抬 升,晚期未遭受大规模构造破坏,油气保存条件较 好。综合判断秀山、松桃、花垣地区为常规油气潜 在发育区。此外,松桃、花垣、秀山、湘潭、鹤峰等 地区大塘坡组一段厚度大、有机质含量高、生烃条 件好,具有良好的页岩气地质条件,为页岩气潜在 发育区。

台内盆地

深水陆棚

/

/

6 结 论

(1)大塘坡组形成于间冰期,沉积过程受拉张 裂陷活动控制,具有鲜明的堑垒分异结构,可划分 出2大类沉积相、7类沉积亚相及若干沉积微相,整 个沉积期构成一个完整的海侵—高位—海退沉积 旋回。

(2)大塘坡组一段沉积期是发生广泛海侵和拉 张活动活跃的时期,沉积环境可划分为潮坪—潟 湖—浅水陆棚—局限陆棚—深水陆棚。其中具有 油气资源潜力的相带为局限陆棚亚相和潟湖亚相, 为碳锰富集相带,在平面上呈近北东—南西向展 布,最大沉积厚度可达 30 m。

陡山沱组

牛蹄塘组

图 15 中上扬子地区大塘坡组碳质页岩扫描电镜下孔隙形态

a—凹凸接触的钠长石颗粒发育溶蚀孔及粒缘缝; b—黄铁矿晶体被溶蚀后形成的铸模孔集合体; c—填隙状有机质发育少量孔隙; 见微晶钾长石颗粒; d—填隙状有机质发育少量孔隙

Fig.15 Pore morphology of carbonaceous shale of Datangpo Formation in the Middle and Upper Yangtze Region

a-The albite grains in contact with the concave—convex develop dissolution pores and grain boundary fractures; b-The aggregates of mold pores formed after the dissolution of the pyrite crystals; c-The interstitial organic matter develops a small amount of pores; see microcrystalline potassium feldspar grains; d-Interstitial organic matter with a small amount of pores

图 16 中上扬子地区大塘坡组成藏组合模式图

 Nh_2g —南华系古城组; Nh_2d^{1-2} —南华系大塘坡组一段~二段; Nh_3n —南华系南沱组; Z_1ds —南华系陡山沱组; Z_1dn^{1-4} —南华系灯影组一段~四 段; C_1n^{1-3} —寒武系牛蹄塘组一段~三段

Fig.16 Datangpo Formation and hydrocarbon accumulation assemblage model in the Middle and Upper Yangtze Region Nh₂g–Gucheng Formation, Nanhua System; Nh₂ d^{1-2} –The first and second member of Datangpo Formation, Nanhua System; Nh₃n–Nantuo Formation, Nanhua System; Z₁ds–Doushantuo Formation, Sinian System; Z₁ dn^{1-4} –The first–fourth member of Dengying Formation, Sinian System; C_1n^{1-3} –The first–third member of Niutitang Formation, Cambrian System

质

(3)大塘坡组一段具有良好的生烃潜力和页岩 气发育潜力,碳锰质页岩有机质显微组分以沥青组 和腐泥组为主,发育 I 型腐泥型干酪根,生烃物质基 础好。残余有机碳含量高,最高可达 10% 以上,一 般在 3%~4%,为优质烃源岩。含碳页岩孔隙度值可 达 5%,孔隙以无机矿物孔、缝为主,局部仍可见到 保存较好的有机质孔。松桃、花垣、秀山、湘潭、鹤 峰等地区具有良好的页岩气地质条件,为页岩气潜 在发育区。

(4)以大塘坡组为烃源岩可形成多类油气成藏 组合,南华纪持续活动的同沉积断裂贯通上下,为 油气运移提供了良好通道。渝黔湘交界的秀山、松 桃、花垣地区在大塘坡组沉积期具有鲜明的 垒堑分异构造格局,为古油藏或分散液态烃的有利 聚集地区,源储配置条件较好,为常规油气潜在发 育区。

References

- An Zhengze, Zhang Renbiao, Chen Jiacai, Qin Ying, Pan Wen, Wu Guiwu, Peng Qianyun, Zheng Chao, Zhang Feifei, Zhu Xiangkun, Wang Haibin. 2014. Geological and geochemical characteristics of Daotuo superlarge manganese bore deposit in Songtao County of Guizhou Province: Constraint on formation mechanism of Mn-carbonate ores[J]. Mineral Deposits, 33(4): 870–884 (in Chinese with English abstract).
- Chen Jianshu, Dai Chuangu, Peng Chenglong, Wang Min, Lu Dingbiao, Wang Xuehua, Luo Shan. 2016. The filling sequence and stratigraphic framework of rift basin during the Neoproterozoic 820–635Ma in Hunan, Guizhou and Guangxi[J]. Geology in China, 43(3): 899–920 (in Chinese with English abstract).
- Dan Yong, Yan Jianfei, Bao Shujing, Liang Bin, Ma Long, Nie Guoquan, Cao Junfeng, Ji Shaocong, Han Kai. 2023. Discovery of Sinian–Cambrian multi–tier shale gas in Guidandi–1 well of southwest margin of Xuefeng uplift[J]. Geology in China, 50(1): 291–292 (in Chinese).
- Du Yuansheng, Zhou Qi, Yu Wenchao, Wang Ping, Yuan Liangjun, Qi Jing, Guo Hua, Xu Yuan. 2015. Linking the cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break–up of Rodinia supercontinent and Sturtian glaciation[J]. Geological Science and Technology Information, 34(6): 1–7 (in Chinese with English abstract).
- Du Yuansheng, Zhou Qi, Yu Wenchao, Zhang Yaguan, Wang Ping, Qin Yongjun, Pang Dawei. 2018. Sedimentary geotectonics and its control function of sedimentary mineral in Nanhua Period–Sinian Period in Guizhou[J]. Guizhou Geology, 35(4): 282–290 (in Chinese with English abstract).

- Evans D A D. 2000. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox[J]. American Journal of Science, 300(5): 347–433.
- Guan Shuwei, Wu Lin, Ren Rong, Zhu Guangyou, Peng Chaoquan, Zhao Wentao, Li Jie. 2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 38(1): 9–22 (in Chinese with English abstract).
- Li Xianhua, Wang Xuance, Li Wuxian, Li Zhengxiang. 2008. Petrogenesis and tectonic significance of Neoproterozoin basaltic rocks in South China: From orogenesis to intracontinental rifting[J]. Geochimica, 37(4): 382–398 (in Chinese with English abstract).
- Lund K, Aleinikoff J N, Evans K V, Fanning C M. 2003. SHRIMP U–Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits[J]. Geological Society of America Bulletin, 115(3): 349–372.
- Ma Zhixin, Luo Liang, Liu Xiting, Liu Wei, Sun Zhiming. 2016. Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan manganese deposit in Xiushan area of Chongqing[J]. Journal of Palaeogeography, 18(3): 473–485 (in Chinese with English abstract).
- Qi Jing, Yu Wenchao, Du Yuansheng, Zhou Qi, Guo Hua, Wang Jiawu, Wang Ping, Xu Yuan. 2015. Paleoclimate evolution of the cryogenian Tiesi'ao Formation–Datangpo Formation in eastern Guizhou Province: Evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 34(6): 47–57 (in Chinese with English abstract).
- Tan Mantang, Lu Zhixiong, Zhang Yan. 2009. Preliminary analysis on genesis of manganese deposit in Datangpo Formation, west Hubei Province[J]. Resources Environment & Engineering, 23(2): 108–113 (in Chinese with English abstract).
- Wang Jian, Liu Baojun, Pan Guitang. 2001. Neoproterozoic rifting history of south china significance to rodinia breakup[J]. Journal of Mineralogy and Petrology, 21(3): 135–145 (in Chinese with English abstract).
- Wang Jian, Duan Taizhong, Xie Yuan, Wang Zhengjiang, Hao Ming, Liu Wei. 2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block[J]. Geological Bulletin of China, 31(11): 1739–1749 (in Chinese with English abstract).
- Wang X L, Zhou J C, Qiu J S, Zhang W L, Liu X M, Zhang G L. 2006. LA–ICP–MS U–Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 145(1/2): 111–130.
- Wang Xingui, Wang Chaoyong, Dou Luxing. 2015. Shale gas condition and potential in Datangpo Formation of Nanhua System on the southeast of Sichuan Basin[J]. Science Technology and Engineering, 15(17): 113–116 (in Chinese with English abstract).
- Wang Zecheng, Jiang Hua, Wang Tongshan, Gu Zhidong, Huangshipeng. 2014. Hydrocarbon systems and exploration potentials of Neoproterozoic in the Upper Yangtze Region[J].

Natural Gas Industry, 34(4): 27–36 (in Chinese with English abstract).

- Wang Zecheng, Liu Jingjiang, Jiang Hua, Huang Shipeng, Wang Kun, Xu Zhengyu, Jiang Qingchun, Shi Shuyuan, Ren Mengyi, Wang Tianyu. 2019. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the Middle–Upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(1): 39–51 (in Chinese with English abstract).
- Wan Tianfeng. 2011. The Tectonics of China [M]. Beijing: Geological Publishing House, 65–67 (in Chinese).
- Wei Guoqi, Yang Wei, Zhang Jian, Xie Wuren, Zeng Fuying, Su Nan, Jin Hui. 2018. The pre–Sinian rift in central Sichuan Basin and its control on hydrocarbon accumulation in the overlying strata[J]. Petroleum Exploration and Development, 45(2): 179–189 (in Chinese with English abstract).
- Xie Zengye, Wei Guoqi, Zhang Jian, Yang Wei, Zhang Lu, Wang Zhihong, Zhao Jie. 2017. Characteristics of source rocks of the Datangpo Fm, Nanhua System, at the southeastern margin of Sichuan Basin and their significance to oil and gas exploration[J]. Natural Gas Industry, 37(6): 1–11 (in Chinese with English abstract).
- Yin Chongyu, Wang Yangeng, Tang Feng, Wan Yusheng, Wang Ziqiang, Gao Linzhi, Xing Yusheng, Liu Pengju. 2006. SHRIMP II U–Pb zircon date from the Nanhuan Datangpo Formation in Songtao County, Guizhou Province[J]. Acta Geologica Sinica, 80(2): 273–278 (in Chinese with English abstract).
- Zhai Gangyi, Bao Shujing, Wang Yufang ChenKe, Wang Shengjian, Zhou Zhi, Song Teng, Li Haohan. 2017. Reservoir accumulation model at the edge of palaeohigh and significant discovery of shale gas in Yichang Area, Hubei Province[J]. Acta Geoscientica Sinica, 38(4): 441–447 (in Chinese with English abstract).
- Zhang Gaochong. 2020. Sedimentary Facies and Lithofacies Paleogeography of the Nanhua System Datangpo Formation on the Northern Margin of the Yangtze Platform[D]. Chengdu: Chengdu University of Technology, 26–49(in Chinese with English abstract).
- Zhang Jian, Yang Wei, Yi Haiyong, Xie Wuren, Xie Zengye, Zeng Fuying, Cen Yongjing. 2015. Feasibility of high-helium natural gas exploration in the Presinian strata of the Sichuan Basin[J]. Natural Gas Industry, 35(1): 45–52 (in Chinese with English abstract).
- Zhang Yujie, An Xianyin, Liu Shilei, Gao Yongjuan, Zheng Jie, Sang Yongheng. 2020. The lithofaces, Mn–bearing sedimentary filling and palaeogeographic pattern of Early Datangpo Stage and implied for manganese in the northeastern Guizhou Province[J]. Geology in China, 47(3): 607–626 (in Chinese with English abstract).
- Zhao Wenzhi, Wang Zhaoyun, Wang Dongliang, Li Jian, Li Yongxin, Hu Guoyi. 2015. Contribution and significance of dispersed liquid hydrocarbons to reservoir formation[J]. Petroleum Exploration and Development, 42(4): 401–413 (in Chinese with English abstract).

Zhao Wenzhi, Wang Xiaomei, Hu Suyun, Zhang Shuichang, Wang

Huajian, Guan Shuwei, Ye Yuntao, Ren Rong, Wang Tongshan. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China[J]. Science China Earth Sciences, 49(6): 939–964 (in Chinese).

- Zhao Zhiqiang, Ling Yun, Li Heliang, Jiang Kai, Li Jie, Cai Keke, Liao Hong. 2019. Geochemistry and significance of the Datangpo Formation in the Xiaochayuan manganese deposit in the Xiushan County, Chongqing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2): 330–341 (in Chinese with English abstract).
- Zhou Qi, Du Yuansheng, Qin Ying. 2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model : A case study of Datangpo type' manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area[J]. Mineral Deposits, 32(3): 457–466 (in Chinese with English abstract).
- Zhu Xiaomin, Yang Junsheng, Zhang Xilin. 2004. Application of lithofacies palaeogeography in petroleum exploration[J]. Journal of Palaeogeography, 6(1): 101–109 (in Chinese with English abstract).
- Zhu Xiangkun, Peng Qianyun, Zhang Renbiao, An Zhengze, Zhang Feifei, Yan Bin, Li Jin, Gao Zhaofu, Qin Ying, Pan Wen. 2013. Geological and geochemical characteristics of the Daotuo super–large manganese ore deposit at Songtao Country in Guizhou Province[J]. Acta Geologica Sinica, 87(9): 1335–1348 (in Chinese with English abstract).

附中文参考文献

- 安正泽,张仁彪,陈甲才,覃英,潘文,吴桂武,彭乾云,郑超,张飞飞, 朱祥坤,王海宾. 2014. 贵州省松桃县道坨超大型锰矿床的发现 及其成因探讨[J]. 矿床地质, 33(4): 870-884.
- 陈建书, 戴传固, 彭成龙, 王敏, 卢定彪, 王雪华, 骆珊. 2016. 湘黔桂 相邻区新元古代 820~635Ma 时期裂谷盆地充填序列与地层格 架[J]. 中国地质, 43(3): 899-920.
- 淡永, 闫剑飞, 包书景, 梁彬, 马龙, 聂国权, 曹竣锋, 季少聪, 韩凯. 2023. 雪峰隆起西南缘 (贵丹地1井) 震旦-寒武系获多层系页岩 气重大发现[J]. 中国地质, 50(1): 291-292.
- 杜远生,周琦,余文超,王萍,袁良军,齐靓,郭华,徐源. 2015. Rodinia 超大陆裂解、Sturtian 冰期事件和扬子地块东南缘大规 模锰成矿作用[J]. 地质科技情报, 34(6): 1-7.
- 杜远生,周琦,余文超,张亚冠,王萍,覃永军,庞大卫.2018.贵州南 华纪-震旦纪沉积大地构造及其对沉积矿产的控制作用[J].贵州 地质,35(4):282-290.
- 管树巍,吴林,任荣,朱光有,彭朝全,赵文韬,李杰.2017.中国主要 克拉通前寒武纪裂谷分布与油气勘探前景[J].石油学报,38(1): 9-22.
- 李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成 因与构造意义: 从造山运动到陆内裂谷[J]. 地球化学, 37(4): 382-398.
- 马志鑫, 罗亮, 刘喜停, 刘伟, 孙志明. 2016. 重庆秀山小茶园锰矿南 华系大塘坡组古环境[J]. 古地理学报, 18(3): 473-486.
- 齐靓,余文超,杜远生,周琦,郭华,王佳武,王萍,徐源. 2015. 黔东南

地

质

中

华纪铁丝坳期--大塘坡期古气候的演变:来自 CIA 的证据[J].地 质科技情报,34(6):47-57.

- 谭满堂,鲁志雄,张嫣. 2009. 鄂西地区南华系大塘坡期锰矿成因浅 析——以长阳古城锰矿为例[J]. 资源环境与工程, 23(2): 108-113.
- 王剑, 刘宝珺, 潘桂棠. 2001. 华南新元古代裂谷盆地演化—— Rodinia 超大陆解体的前奏[J]. 矿物岩石, 21(3): 135-145.
- 王剑,段太忠,谢渊,汪正江,郝明,刘伟.2012.扬子地块东南缘大地 构造演化及其油气地质意义[J].地质通报,31(11):1739–1749.
- 王新贵, 王超勇, 窦鲁星. 2015. 川东南新元古界南华系大塘坡组页 岩气勘探潜力分析[J]. 科学技术与工程, 15(17): 113-116.
- 汪泽成,姜华,王铜山,谷志东,黄土鹏. 2014. 上扬子地区新元古界 含油气系统与油气勘探潜力[J]. 天然气工业, 34(4): 27-36.
- 汪泽成,刘静江,姜华,黄士鹏,王坤,徐政语,江青春,石书缘,任梦 怡,王天宇.2019.中-上扬子地区震旦纪陡山沱组沉积期岩相古 地理及勘探意义[J].石油勘探与开发,46(1):39-51.
- 万天丰. 2011. 中国大地构造学[M]. 北京: 地质出版社, 65-67.
- 魏国齐,杨威,张健,谢武仁,曾富英,苏楠,金惠. 2018. 四川盆地中 部前震旦系裂谷及对上覆地层成藏的控制作[J].石油勘探与开 发,45(2):179-189.
- 谢增业,魏国齐,张健,杨威,张璐,王志宏,赵洁.2017.四川盆地东 南缘南华系大塘坡组烃源岩特征及其油气勘探意义[J].天然气 工业,37(6):1-11.
- 尹崇玉, 王砚耕, 唐烽, 万渝生, 王自强, 高林志, 邢裕盛, 刘鹏举. 2006. 贵州松桃南华系大塘坡组凝灰岩锆石 SHRIMP II U-Pb 年 龄[J]. 地质学报, 80(2): 273-278.
- 翟刚毅, 包书景, 王玉芳, 陈科, 王胜建, 周志, 宋腾, 李浩涵. 2017. 古

隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 38(4):441-447.

- 张高冲. 2020. 扬子北缘南华系大塘坡组沉积相与岩相古地理[D]. 成都: 成都理工大学, 26-49.
- 张健,杨威,易海永,谢武仁,谢增业,曾富英,岑永静.2015.四川盆 地前震旦系勘探高含氦天然气藏的可行性[J].天然气工业, 35(1):45-52.
- 张予杰,安显银,刘石磊,高永娟,郑杰,桑永恒.2020. 黔东北地区大 塘坡组早期含锰沉积充填、岩相古地理与锰矿的关系[J]. 中国地 质,47(3):607-626.
- 赵文智, 王兆云, 王东良, 李剑, 李永新, 胡国义. 2015. 分散液态烃的 成藏地位与意义[J]. 石油勘探与开发, 42(4): 401-413.
- 赵文智, 王晓梅, 胡素云, 张水昌, 王华建, 管树巍, 叶云涛, 任荣, 王 铜山. 2019. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科 学: 地球科学, 49(6): 939-964.
- 赵志强, 凌云, 李核良, 蒋凯, 李杰, 蔡柯柯, 廖洪. 2019. 重庆秀山小 茶园大塘坡组含锰岩系地球化学特征及地质意义[J]. 矿物岩石 地球化学通报, 38(2): 330-341.
- 周琦, 杜远生, 覃英. 2013. 古天然气渗漏沉积型锰矿床成矿系统与 成矿模式——以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例[J]. 矿床地质, 32(3): 457-466.
- 朱筱敏,杨俊生,张喜林. 2004. 岩相古地理研究与油气勘探[J]. 古地 理学报, 6(1): 101-109.
- 朱祥坤, 彭乾云, 张仁彪, 安正泽, 张飞飞, 闫斌, 李津, 高兆富, 覃英, 潘文. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征 [J]. 地质学报, 87(9): 1335-1348.