DOI: 10.12090/j.issn.1006-6616.2019.25.01.013

文章编号: 1006-6616 (2019) 01-0139-12

川西拉拉含矿镁铁质层状岩体的成因及构造背景

孙君一1,于文佳1,崔加伟2,李 重1,罗照华1

(1. 中国地质大学(北京)地质过程与矿产资源国家重点实验室,北京 100083;

2. 中国地质科学院地质力学研究所,北京 100081)

摘 要:川西拉拉含矿镁铁质层状岩体位于扬子地块西缘,构造环境复杂,关于其成因机制及 岩浆源区的问题至今仍缺乏系统的研究。文章针对该岩体七个岩相带,进行了主、微量元素和 Sr-Nd 同位素分析,结果表明,七个岩相带 (YWS-1—YWS-7) 是岩浆经历不同的演化过程而形 成的。其中,第五相带 SiO₂ 含量高 (42.95%~44.07%),MgO 含量低 (1.62%~1.89%),稀土 总量明显偏低 (295.32×10⁻⁶~366.36×10⁻⁶),Cr、Ni 含量偏低,⁸⁷Sr/⁸⁶Sr 为 0.7391~0.7812,是 受到地壳混染所致;其它相带 Mg[#]值高 (0.54~0.74),稀土总量偏高 (672.53×10⁻⁶~986.66× 10⁻⁶),⁸⁷Sr/⁸⁶Sr 为 0.7087~0.7097,显示岩石圈地幔源区特征。结合区域地质背景分析,认为该 层状岩体产生于大陆裂谷构造环境,岩浆来源于岩石圈地幔源区,演化过程中结晶分异和多次 脉动作用相伴。这一活动过程与新元古时期扬子板块西缘的超级地幔柱活动有关。 关键词:拉拉矿区;层状岩体;主、微量元素;岩石圈地幔;岩石成因 中图分类号:P588.12 文献标识码:A

THE PETROGENESIS AND TECTONIC SETTING OF THE ORE-BEARING MAFIC LAYERED INTRUSIONS IN LALA AREA, WESTERN SICHUAN

SUN Junyi¹, YU Wenjia¹, CUI Jiawei², LI Zhong¹, LUO Zhaohua¹

(1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China;
 2. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China)

Abstract: The ore-bearing mafic layered intrusions in Lala District, Western Sichuan Province, is located on the west margin of the Yangzi platform with complex tectonic environment, and there is still a lack of systematic research on its genesis mechanism and magmatic source. The main, trace elements and Sr-Nd isotopes of the seven lithofacies belts are analyzed in this article, and the results show that the seven lithofacies belts (YWS-1—YWS-7) were formed by different evolution processes of magma. The fifth lithofacies (YWS-5) represents the magma derived from mantle contaminated by earth crust, with high SiO₂ content (42.95% ~ 44.07%), low MgO content (1.62% ~ 1.89%), obviously low total amount of rare earth elements (295.32×10⁻⁶ ~ 366.36×10⁻⁶), low content of Cr, Ni , 87 Sr/⁸⁶Sr 0.7391

基金项目:中国地质调查局地质调查项目(1212011220921, 1221011121266, 12120113094100, 1212011121075)

作者简介:孙君一(1988-),女,在读博士,从事岩石学、矿物学、矿床学研究。E-mail: 476015552@qq.com

收稿日期: 2018-06-04; 修回日期: 2018-08-26; 责任编辑: 范二平

引用格式:孙君一,于文佳,崔加伟,等.川西拉拉含矿镁铁质层状岩体的成因及构造背景 [J].地质力学学报,2019,25 (1): 139-150 DOI: 10.12090/j.issn.1006-6616.2019.25.01.013

SUN Junyi, YU Wenjia, TANG Zexun, et al. The petrogenesis and tectonic setting of the ore-bearing mafic layered intrusions in Lala area, western Sichuan [J]. Journal of Geomechanics, 2019, 25 (1): 139-150 DOI: 10.12090/j.issn.1006-6616.2019.25.01.013

2019

~0.7812; other lithofacies represent the magma derived from lithospheric mantle source area, with high Mg^{*} content (0.54~0.74), high content of rare earth elements (672.53×10⁻⁶~986.66×10⁻⁶), ⁸⁷Sr/⁸⁶ Sr 0.7087~0.7097. Based on the analysis of regional geological background, it is concluded that the layered intrusions were produced in continental rift tectonic environment and the magma originated from lithospheric mantle source area, with crystallization differentiation and multiple pulsations associated in the evolution process. This process is related to the Neoproterozoic super mantle plume activities on the western margin of the Yangtze plate.

Key words: Lala mining area; layered intrusions; major and trace elements; lithospheric mantle; petrogenesis

0 引言

镁铁质层状侵入体的层状结构,记录着岩浆 的作用过程,对于揭示岩体成因有着重要的意义。 关于层状岩体成因有两种观点,一是岩浆一次大 的注入活动后,没有新岩浆补给条件下,岩浆经 过结晶分异作用固化形成^[1];二是认为在开放体 系中母岩浆多次注入形成^[2-4]。层状侵入体母岩岩 浆成分则是判定岩体成因的关键因素^[5]。但是由 于开放体系岩浆注入多会伴随对围岩的地壳混染 作用,使得对母岩岩浆的识别有许多干扰。通过 对岩浆作用过程同期形成的小层状岩体、岩墙或 者岩脉成分的研究来确定母岩岩浆成分,是一种 是实用、可靠的方法^[6]。此外,层状岩体分布大 多受区域性断裂控制,多与构造环境中的地幔柱 活动有关,所以对层状岩体岩浆成分的判定,对 于识别该区的构造背景有一定的指示意义。

拉拉矿区位于扬子地台西缘,构造环境复杂, 是东西向、南北向的构造复合带^[7]。南北向构造 体系主要受南北向延伸的川滇被动大陆边缘裂谷 系影响^[8]。该区出露有大量的基性—超基性岩体, 已有研究主要侧重于新街、白马、攀枝花等属于 峨眉山大火成岩省的层状岩体,对于拉拉地区基 性岩体,由于并非"富矿"层位,所以研究相对 较少。文章针对含矿镁铁质层状岩体的七个岩相 带进行了系统的主、微量元素和 Sr-Nd 同位素分 析,进而探讨该岩体的成因及构造背景。

1 区域地质及岩相特征

拉拉 Fe-Cu 矿床位于四川省西南部攀西地区, 行政上属会理县管辖,大地构造位置位于扬子地 块西缘南岭东西构造带与川滇南北向构造带的复 合部位^[7-9]。扬子地块内主要分布有新元古代火山 一沉积岩,太古代地质体零星出露^[10-11]。扬子地 块西南部广泛分布着古元古代晚期—新元古代早 期地层及镁铁质侵入体(图1a),发育有许多南北 向主干断裂及相伴的次级断裂,具多期性和继承 性的构造特点,且沿一些深断裂有地幔来源的基 性一超基性岩浆上升形成的岩浆岩^[7]。拉拉矿区 出露的主要地层为古元古界河口群、中元古界昆 阳群以及中生界三叠系上统白果湾组^[11],且沿东 西向断层两侧分布有大面积的辉长岩群(图1b)。

文中研究的镁铁--超镁铁含矿层状岩体,为 辉长类岩石,岩体中心含有大量的磁铁矿。该层 状岩体厚度 190 cm,发现于拉拉矿区大露天采场 西北角 (N26°14.255'; E101°56.845'), 海拔高程 2158 m。岩体顺层侵入于落凼组地层,产状为5° ∠26°(图 2a)。岩体具有明显的岩相分带,根据 组成岩石的颜色、结构和磁性强度(野外用磁性 笔定性测试),岩体沿厚度方向可划分出七个岩相 带。以第五岩相带为中心、上下两侧对称分布的 岩相带具有相同的岩性, 岩体与落凼组地层的侵 入接触关系清晰可见(图 2a)。此外,各岩相带的 岩性均一,厚度稳定。带与带之间具有清晰的接 触边界,但未见明显的冷凝边和烘烤边(图 2b-2d)。且第五岩相带是一个特殊的层位,岩石风化 面呈灰褐色--褐紫色,新鲜面呈钢灰色--黑色 (图 2d),用磁性笔测试显示强磁性^[10]。

显微镜下观察,发现各个岩相带矿物组合比较相似,主要有辉石、斜长石、云母、角闪石、磁铁矿等。各岩相带矿物的含量和晶体颗粒大小 有较大区别,暗示了不同的成分特征和固结过程。 其中第五相带(YWS-5)与其余相带(YWS-1— YWS-4、YWS-6—YWS7)成分差异明显。第五相

a一华南地区新元古代火山岩和沉积岩分布简图; b一拉拉地区地质简图(据文献 [11] 修改)

图1 拉拉地区区域地质及采样位置图

Fig. 1 Geologic map of the Lala district and locations of the sandstone samples

带(YWS-5)主要成分为钾长石、白云母、石英和 Fe-Ti氧化物,少量磷灰石、方解石。其中,钾

长石可见明显的环带结构和泥化现象,局部成聚 集相;白云母大小约 200 μm 左右,多为不规则 状,暗示遭受过溶蚀作用;石英多为它形,大小 多为200 μm 左右; Fe-Ti 氧化物,大小变化较大, 最大粒径可达到400 μm 左右,呈稠密浸染状或斑 杂状分布(图2e)。其余相带以第三相带(YWS-3) 最具代表性,主要成分为辉石、斜长石、角闪石、 黑云母和 Fe-Ti 氧化物,含少量方解石及硫化物。 其中,辉石颗粒较大,约600 μm 左右,且边缘多 溶蚀成港湾状,溶蚀港湾中多有微细角闪石和 Ti-Fe氧化物晶体聚集,局部可见辉石晶体聚集; 角闪石多在200~400 μm,为自形—半自形晶,边 界比较清晰;黑云母多在300 μm 左右,多成碎裂 状,边界比较模糊,边部多发育 Ti-Fe 氧化物 (图2f)。

 Oxide—Fe-Ti 氧化物; Mca—云母; Qtz—石英; Kfs—长石;

 Px—辉石; Am—角闪石

 a—岩体的地质产状和岩相分带特征; b—带1 (YWS-1)、

 带2 (YWS-2)、带3 (YWS-3) 的手标本特征及它们之间的

 接触关系; c—带3 (YWS-3)和带4 (YWS-4)的手标本特征

 及其接触关系; d—带5 (YWS-5)的手标本特征;

 e—带5 (YWS-5)的显微镜正交偏光照片;

 f—带3 (YWS-3)的显微镜正交偏光照片

- 图 2 岩体典型露头及显微镜下特征 (据文献 [10]) Fig. 2 The microphotographs and field photographs of sheet in Lala district (after reference [10])
- 2 样品采集与分析

取岩体较窄处的一整块岩体进行连续取样,

以保证取样的完整性。根据接触边界将岩体从顶 到底分为七个岩相带。YWS-3 和 YWS-7 又平均细 分为 a—d 四个小带, YWS-4 和 YWS-6 又平均细分 为 a、b 两个小带, YWS-7 平均细分为 a—c 三个小 带,总共细分为 17 个小相带。文章对每一个小部 分分别做了细致的岩石地球化学、Sr-Nd 同位素 分析。

其中岩石地球化学分析由华北有色地质勘查 局燕郊中心实验室测试完成。主量元素分析使用 X 光荧光光谱法(XRF);对微量和稀土元素分析使 用等离子质谱法(ICPMS),分析误差小于 5%。 Sr、Nd 同位素分析在天津地质矿产研究所试验测 试室测试完成,所使用的仪器为 ThermoFisher 公司 生产的 Triton 热电离质谱仪。Rb、Sr、Sm、Nd 含 量采用同位素稀释法测定,Nd 和 Sr 同位素比值是 对提纯的样品直接测定。样品采用 HF+HClO₄ 法溶 样,Nd 的纯化采用 HDEHP 反色层法,以确保没 有¹⁴⁴ Sm 对¹⁴⁴Nd 的干扰。详细的化学前处理过程参 见文献[12]、[13]。

3 实验结果

3.1 岩石地球化学

3.1.1 主量元素

17个样品 SiO,含量为 40.84%~44.07%,平 均 41.90%; K₂0 含量为 1.43%~3.30%, 平均为 1.97%; Na₂O的含量为 1.06%~3.31%, 平均为 2.49%; K₂O+Na₂O的含量在 2.57%~7.26%之间, 平均为 4.46%, 整体属于碱性系列。TiO₂ 含量为 2.45%~3.83%,平均3.04%; Al,O,含量在 7.87%~14.64%之间,平均10.10%。^TFeO(全铁) 含量为 10.77%~21.74%, 平均 12.85%, 其中 Fe₂O₃含量为 3.53%~12.88%, 平均 5.49%, 变化 较大; FeO 含量为 6.62%~8.86%, 平均 7.36%。 CaO的含量为 2.45%~11.84%, 平均为 9.49%; MgO的含量为 1.62%~17.91%, 平均为 10.24%; CaO 和 MgO 含量变化幅度较大。P2O5 含量 0.70% ~1.05%, 平均 0.85%; MnO 的含量为 0.16%~ 0.24%, 平均为 0.30%; P,O,、MnO 含量变化不 大(表1)。第三相带(YWS-3)和第七相带 (YWS-7)的 Mg[#]值为 0.67~0.74,处于与地幔橄 榄岩平衡状态的原生岩浆范围内, 岩浆演化程度较 低;相带 YWS-1、YWS-2、YWS-4、YWS-6 的 Mg[#]值

表1 各相带主量元素 (wt%) 地球化学分析数据

Sample	YWS-1	YWS-2	YWS-3a	YWS-3h	YWS-3c	YWS-3d	YWS-4a	YWS-4h	YWS-5a	YWS-5h	YWS-5c	YWS-6a	YWS-6h	YWS-7a	YWS-7h	YWS-7c	YWS-7d
c:o	1.01	1 1 0 2	1 1 5 54	1 1 0 55	1 1 0 50	10.04	1 10 14	1 10 10	1 10 54	1 10 55	100.50	1 10 00	1 1 0 00	1 10 74	1 10 70	1	10070
5102	41.91	41.71	41.52	41.43	41.05	40.84	41.25	42.67	44.07	42.95	44.05	41.83	41.35	41.33	41.19	41.51	41.67
TiO ₂	3.36	3.24	2.81	2.59	2.52	2.54	2.95	3.30	3.53	3.66	3.83	3.29	3.22	2.78	2.45	2.71	2.92
$\mathrm{Al}_2\mathrm{O}_3$	10.81	10.67	8.63	7.87	8.07	8.07	9.88	10.46	13.59	14.05	14.64	10.40	10.03	8.82	7.97	8.51	9.18
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	4.64	3.90	4.28	4.25	4.26	3.77	3.90	3.91	12.09	12.24	12.88	4.18	4.00	3.81	3.53	3.91	3.86
FeO	6.70	7.29	6.95	7.24	7.20	7.82	6.87	7.12	6.62	8.21	8.86	7.04	7.04	7.49	7.96	7.54	7.14
MnO	0.20	0.26	0.16	0.20	0.20	0.21	0.23	0.24	0.64	0.55	0.48	0.38	0.33	0.24	0.25	0.25	0.26
MgO	7.20	7.85	13.95	17.91	16.92	16.14	8.96	7.90	1.89	1.62	1.63	7.53	8.30	13.15	16.63	14.62	11.85
CaO	11.40	10.89	10.92	8.85	9.55	9.68	11.84	10.85	5.84	5.20	2.45	11.48	12.33	10.83	8.77	9.47	10.99
Na ₂ O	3.11	3.13	1.77	1.06	1.31	1.55	2.93	3.09	2.29	3.31	5.12	3.20	2.92	2.11	1.26	1.79	2.39
K_2O	1.98	2.43	1.72	1.51	1.53	1.58	2.35	2.34	3.30	2.86	2.14	1.94	1.81	1.58	1.43	1.44	1.60
$P_{2}O_{5}$	1.05	0.96	0.80	0.70	0.77	0.76	0.91	0.94	0.79	0.79	0.86	0.98	0.93	0.82	0.76	0.83	0.87
LOI	7.09	7.11	6.01	5.74	6.10	6.38	7.33	6.59	5.05	4.04	2.74	7.66	7.58	6.68	7.21	7.01	7.00
$H_{2}0^{+}$	0.55	0.68	0.65	0.66	0.82	0.79	0.67	0.70	0.65	0.38	1.12	0.65	0.67	0.84	1.58	1.23	0.99
H_20^-	0.48	0.45	0.58	0.81	0.62	0.53	0.65	0.67	0.59	0.49	0.52	0.46	0.52	0.50	0.54	0.47	0.47
Total	100.48	100.57	100.75	100.82	100. 92	100.66	100.72	100.78	100.94	100.35	101.32	101.02	101.03	100.98	101.53	101.29	101.19

在 0.54~0.58 之间,岩浆演化程度较高^[14~15],第 五相带(YWS-5) Mg[#]值为 0.12~0.16,推测为该 相带在岩浆演化过程后期遭受地壳混染作用所致。

在 TAS 图解中^[16],各个相带的样品均落在了副 长石辉长岩系列中,属于同一系列,但各个相带样品 的投影位置有明显的变化,其中第三相带 (YWS-3) 和第七相带 (YWS-7)更靠近橄榄辉长岩系列 (图 3)。在 Zr/P₂O₅—TiO₂ 图上^[17],所有样品均落入碱性 范围 (图 4)。总体上该镁铁质岩体显示出碱性玄武 岩主量元素特征,明显不同于岛弧玄武岩(w (Al₂O₃) <16%,w (TiO₂) <1%,w (P₂O₅) <3%)和活动大 陆边缘玄武岩 (w (Al₂O₃) > 17%,w (TiO₂) < 1.2%,w (P₂O₅) <0.4%)^[18-19]。

Fig. 4 Zr/P_2O_5 —TiO₂ plot (after reference [17])

3.1.2 微量元素

17 个样品稀土总量在 295. $32 \times 10^{-6} \sim 985. 66 \times$ 10⁻⁶, Σ LREE 在 227. 95×10⁻⁶~908. 49×10⁻⁶之间, Σ HREE 在 60. 99×10⁻⁶~78. 17×10⁻⁶之间(表 2)。 在球粒陨石标准化图解中^[20],总体表现为轻稀土 富集,重稀土亏损,REE 配分模式均呈右倾曲线 (图 5)。反映轻、重稀土比值的(La/Yb)_N=10. 20~ 61. 96,平均值为 42. 53;(La/Sm)_N=2. 27~5. 20,平 均值为 4. 44;(Gd/Yb)_N=2. 82~6. 90,平均值为 5. 02;总体显示了轻/重稀土元素之间、轻稀土元 素之间、重稀土元素之间均分馏强,与板内岩浆 岩稀土元素蛛网图相似^[20]。 8Eu 均为轻微负异常, 变化范围为 0. 81~0. 96。其中第五相带(YWS-5) 3 个样品稀土总量明显偏低,在 295. 32×10⁻⁶~

表 2 各相带微量元素和稀土元素 (×10⁻⁶) 地球化学分析数据

Table 2 Geochemical analysis data of trace element and rare earch elements (\times 10⁻⁶) in each lithofacies belt

Sample	YWS-1	YWS-2	YWS-3a	YWS-3b	YWS-3c	YWS-3d	YWS-4a	YWS-4b	YWS-5a	YWS-5b	YWS-5c	YWS-6a	YWS-6b	YWS-7a	YWS-7b	YWS-7c
Sc	29.6	34.8	29.5	27.0	32.2	34.2	26.6	28.6	32.3	24.6	25.6	31.1	30.8	28.3	29.0	28.7
V	324	330	276	231	279	308	241	248	363	292	352	306	289	265	237	255
Cr	189	346	963	1250	473	364	1200	1190	12.3	5.63	7.56	282	375	817	1220	1020
Co	40.9	42.7	62.3	75.8	65.4	68.6	48.2	42.3	34.3	30.7	47.8	44.2	43.9	56.3	65.2	64.2
Ni	52.6	68.9	389	576	127	67.6	501	501	21.3	18.9	25.8	61.8	89.6	325	513	407
Cu	111	121	80.3	48.4	87.6	104	47.7	50.5	6.36	13.4	23.5	94.3	103	109	40.8	80.0
Zn	81.1	78.9	115	108	79.6	90.0	103	108	37.6	28.0	36.6	61.8	65.2	92.0	135	101
Ga	17.8	19.3	15.9	12.7	13.0	16.4	19.3	19.2	33.3	26.4	26.8	19.6	18.5	16.0	14.3	16.8
Rb	52.0	79.6	48.2	39.6	64.7	77.8	38.5	46.2	132	94.6	91.2	73.5	58.3	45.6	46.5	46.3
\mathbf{Sr}	1260	1189	936	989	1620	1356	987	1123	256	146	86	1110	1260	996	752	895
Y	36.7	34.2	30.2	27.9	28.1	32.1	36.5	36.8	46.8	36.5	37.6	35.3	33.7	30.4	28.4	29.7
Zr	428	389	319	372	295	398	310	316	378	374	419	405	413	339	292	321
Nb	80.1	63.6	44.2	55.2	48.7	57.8	44.9	46.2	55.7	47.4	53.6	52.0	47.5	46.2	45.3	44.2
\mathbf{Sb}	0.37	0.28	0.29	0.25	0.28	0.21	0.24	0.26	0.12	0.13	0.13	0.19	0.25	0.31	0.35	0.36
Cs	1.61	2.39	2.38	2.20	2.10	2.17	2.01	2.39	0.96	0.83	1.06	1.98	1.94	1.92	2.15	2.06
Ba	236	246	214	152	226	245	304	235	248	369	366	249	263	256	268	352
La	206	195	175	149	150	178	203	224	56.3	43.2	51.2	200	186	164	156	164
Се	398	385	337	287	287	336	396	423	125	103	119	380	357	318	302	302
Pr	42.3	39.6	35.6	30.3	30.3	35.6	40.9	42.5	15.2	12.4	14.0	40.2	37.8	33.4	31.7	31.9
Nd	168	163	146	123	126	145	167	184	63.5	53.6	63.9	164	155	138	131	132
\mathbf{Sm}	28.9	25.6	22.9	18.5	20.9	22.4	26.3	28.3	14.5	12.3	13.4	27.6	24.6	21.3	21.3	22.2
Eu	6.74	6.23	5.75	4.97	5.01	5.85	6.54	6.69	4.32	3.45	4.05	6.58	6.22	5.56	5.14	5.24
Gd	18.2	19.6	16.7	14.3	14.6	17.6	19.6	20.3	13.5	10.6	11.8	18.6	18.2	15.9	14.8	15.5
Tb	2.22	2.36	2.06	1.80	1.79	2.22	2.33	2.55	2.29	1.53	1.72	2.23	2.21	2.00	1.84	1.90
Dy	10.2	11.1	9.13	8.30	10.9	11.6	8.30	9.89	12.6	9.63	9.88	10.4	10.1	9.00	8.51	8.73
Ho	1.52	1.63	1.44	1.28	1.59	1.75	1.27	1.53	1.92	1.42	1.63	1.54	1.50	1.36	1.29	1.30
Er	3.63	3.71	3.31	2.98	3.73	3.78	2.96	3.50	5.13	3.85	3.96	3.59	3.43	3.15	2.93	3.03
Tm	0.54	0.52	0.49	0.45	0.56	0.54	0.46	0.52	0.75	0.58	0.59	0.54	0.52	0.49	0.47	0.47
Yb	2.73	2.90	2.57	2.34	3.00	3.20	2.35	2.63	3.96	2.78	2.98	2.81	2.69	2.51	2.33	2.39
Lu	0.46	0.47	0.43	0.41	0.48	0.50	0.41	0.45	0.59	0.48	0.48	0.47	0.46	0.44	0.42	0.42
Hf	10.7	10.0	10.0	10.1	9.26	9.96	8.22	10.6	8.78	9.62	10.6	10.2	10.3	10.1	10.4	8.93
Та	2.05	2.06	1.44	3.63	1.76	1.95	2.63	1.78	2.19	3.56	3.51	2.78	1.22	1.78	1.41	1.44
Bi	0.15	0.17	0.26	0.37	0.23	0.26	0.27	0.33	0.18	0.25	0.19	0.36	0.26	0.21	0.38	0.36
Th	23.6	18.2	10.3	20.4	17.2	13.6	13.5	17.6	3.89	3.95	4.02	13.5	13.2	15.4	14.3	16.2
U	5.70	5.57	4.85	4.39	4.10	4.74	5.89	6.12	0.33	0.24	0.29	5.63	5.42	4.86	4.15	4.74

图 5 球粒陨石标准化稀土元素配分图及微量元素原始地幔标准化蛛网图(据文献[21]) Fig. 5 Chondrite-normalized REE patterns and primitive-mantle normalized spidergram (after reference [21])

366.36×10⁻⁶之间,且右倾斜率较缓。

17个样品中相容元素 Cr、Ni 含量变化较大: Cr的含量为 5.63×10⁻⁶~1220×10⁻⁶; Ni的含量为 18.9×10⁻⁶~576×10⁻⁶;其中第五相带(YWS-5)Cr 含量为 5.63×10⁻⁶~12.3×10⁻⁶、Ni 含量为 18.9× 10⁻⁶~25.8×10⁻⁶,明显不富集相容元素;而第三和 第七相带 (YWS-3、YWS-7) Cr 含量 (745×10⁻⁶~ 1250×10⁻⁶) 和 Ni 含量 (264×10⁻⁶ ~ 501×10⁻⁶) 明 显偏高,虽不在原生玄武质岩浆范围^[17](Cr= $300 \times 10^{-6} \sim 500 \times 10^{-6}$; Ni = $300 \times 10^{-6} \sim 400 \times 10^{-6}$), 但与第五相带 (YWS-5) 明显不同,表现出富集 相容元素。Co含量变化较小, 30.7×10⁻⁶~68.6× 10⁻⁶、但也在第三和第七相带 (YWS-3、YWS-7) 相对更富集。结合岩相学特征及元素富集属性 (Ni、Co 多赋存于橄榄石, Cr 多附存于尖晶石、 辉石), 认为元素的富集与第三及第七相带 (YWS-3、YWS-7)含有大量的辉石聚晶有关。

在微量元素原始地幔标准化图解上,总体上 都表现出富集高场强元素 Th,大离子亲石元素 K、 Rb,轻稀土元素 Ce、Sm;强烈亏损大离子亲石元 素 Ba、轻度亏损高场强元素 Ta、Zr、Hf、Nb,重 稀土元素 Y、Yb (图 5)。第五相带 (YWS-5)表 现与其他相带略有不同,强烈亏损 Sr、中等富集 Ce、Th。其中 Ba、Sr 元素的亏损暗示岩浆产生过 程中可能发生了斜长石和钾长石的分离结晶作用。

3.2 Sr-Nd 同位素

对 17 个小相带分别进行 Sr、Nd 同位素组分分 析和计算, 分析结果见表 3。17 个相带的⁸⁷ Rb/⁸⁶ Sr 和⁸⁷ Sr/⁸⁶ Sr 分别为 0.1162~3.1502 和 0.7087~ 0.7812,¹⁴⁷Sm/¹⁴⁴Nd 为 0.0909~0.1387,¹⁴³Nd/¹⁴⁴Nd 为 0. 5119~0. 5123。根据周家云在矿区测得的基性 辉长岩年龄 850 Ma^[9], 计算出 17 个样品的(⁸⁷Sr/ ⁸⁶Sr), 为 0. 706701~0. 742957, ε_{Nd}(t) 值为-6. 8~ 5.4, 整体显示出壳幔混源源区的性质。其中第五 相带 (YWS-5) 显示出富集放射性 Nd 同位素, ε_{Nd} (t) 为-6.8~-0.7;极高的 Sr 同位素比值,⁸⁷Sr/⁸⁶ Sr 为 0.7391~0.7812, 应为地壳混染所致^[22]。其 余各相带 (YWS-1- YWS-4 和 YWS-6--YWS-7) $\varepsilon_{\rm Nd}$ (t) 值较高, 在 4.1~5.4 之间; ⁸⁷Sr/⁸⁶Sr 为 0.7087~0.7097,显示出岩石圈地幔特征^[22]。在 $\varepsilon_{\text{Nd}}(t) - ({}^{87}\text{Sr}/{}^{86}\text{Sr});$ 图中,除第五相带 (YWS-5) 3个样品零散分布于 EM 分区域,其余样品靠近 PM 区附近,说明岩浆应该是来源于岩石圈地幔源 区,后期脉动上升过程中遭受地壳混染^[23](图6)。

表 3 各相带 Sm-Nd 同位素分析数据

Table 3	The Sm-Nd	isotope	analysis	data	in	each	lithofacies	belt
---------	-----------	---------	----------	------	----	------	-------------	------

样品号	$Rb/\times 10^{-6}$	Sr/×10 ⁻⁶	⁸⁷ Sr/ ⁸⁶ Sr	$({}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr})_i$	$Sm/\times 10^{-6}$	$Nd/\times 10^{-6}$	$^{147}{ m Sm}/^{144}{ m Nd}$	$^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$	$({}^{143} \text{Nd}/{}^{144} \text{Nd})_i$	$\varepsilon_{\rm Nd}$ (t)
YWS-1	52	1260	0.709398	0.707904	28.9	168	0.103991	0.512342	0.511762	4.3
YWS-2	79.6	1189	0.709864	0.707441	25.6	163	0.094942	0.512320	0.511791	4.9
YWS-3a	48.2	936	0.709211	0.707347	22.9	146	0.094818	0.512329	0.511800	5.1
YWS-3b	39.6	989	0. 708867	0.707418	18.5	123	0.090923	0.512325	0.511818	5.4
YWS-3c	64.7	1620	0.708847	0.707401	20.9	126	0.100272	0.512309	0.511750	4.1
YWS-3d	77.8	1356	0.708778	0.706701	22.4	145	0.093386	0.512294	0.511773	4.5
YWS-4a	38.5	987	0.70911	0.707698	26.3	167	0.095202	0.512316	0.511785	4.8
YWS-4b	46.2	1123	0.709481	0.707992	28.3	184	0.092977	0.512321	0.511803	5.1
YWS-5a	132	256	0.739185	0.720520	14.5	63.5	0.138036	0.512258	0.511489	-1.0
YWS-5b	94.6	146	0.746396	0.722941	12.3	53.6	0.138711	0.511969	0.511196	-6.8
YWS-5c	91.2	86.3	0.781211	0.742957	13.4	63.9	0.126765	0.512213	0.511506	-0.7
YWS-6a	73.5	1110	0.709751	0.707354	27.6	164	0.101735	0.512328	0.511761	4.3
YWS-6b	58.3	1260	0.709367	0.707692	24.6	155	0.095942	0.512316	0.511781	4.7
YWS-7a	45.6	996	0.709234	0.707577	21.3	138	0.093305	0.512313	0.511793	4.9
YWS-7b	46.5	752	0.709523	0.707285	21.3	131	0.098291	0.512319	0.511771	4.5
YWS-7c	46.3	895	0.709281	0.707408	22.2	132	0.101668	0.512320	0.511753	4.1
YWS-7d	55.6	1080	0.709412	0.707548	24.6	151	0.098484	0.512319	0.511770	4.5

4 讨论

4.1 岩浆源区

在讨论岩浆的源区之前要查清岩浆在岩浆房

的演化过程,尤其是可能的地壳物质的混染作用, 以免混淆源区的地球化学信号^[25-30]。文章在层状 岩体厚度较小处取样,并将其细分为多个相带, 以尽可能的排除地壳混染作用,更好的确定母岩 浆成分。岩体中心第五相带 (YWS-5) 的 Sr、Nd

- 图 6 拉拉镁铁质岩体 $\varepsilon_{\rm Nd}$ (t) (⁸⁷Sr/⁸⁶Sr)_i 图 $ggg^{[24]}$
 - Fig. 6 $\varepsilon_{\rm Nd}$ (t) (⁸⁷Sr/⁸⁶Sr), diagram of the Lala mafic intrusions^[24]

同位素均显示出强烈的同化混染痕迹 (ε_{Nd} (t) = -6.8~-0.7、(${}^{87}Sr/{}^{86}Sr$)_i = 0.739185~0.781211), 第三相带 (YWS-3) 和第七相带 (YWS-7) Nd 同 位素没有显示同化混染的迹象 (ε_{Nd} (t) = 4.1~ 5.4),对同化混染作用敏感的 Sr 同位素略高于大 陆玄武岩 Sr 同位素范围 ((${}^{87}Sr/{}^{86}Sr$)_i = 0.706701~ 0.707698),推测为岩浆作用后期受第五相带 (YWS-5) 岩浆作用影响所致,所以除第五相带 (YWS-5) 外的其余相带的岩浆性质相对更接近源 区岩浆性质。

Grenn^[14]认为与地幔橄榄岩平衡的原生岩浆的 Mg[#] = 0.63~0.73, Freg *et al*^[15]认为 Mg[#] = 0.68~ 0.73。岩体 YWS-3 和 YWS-7 两相带的 8 个样品 Mg[#] = 0.67~0.74, 全部处于原生镁铁质幔源 Mg[#]岩 浆范围, MgO 平均含量高达 15.14%。结合岩相学 特征,如此高的 Mg^{*}值应该与岩相带中大颗粒辉石 晶体 发育及晶体的局部聚集有关,故不能将 15.14%视为近似原生岩浆的 MgO。但是可以推测, 形成该岩体的原生岩浆应该是 MgO 含量较高的玄 武岩浆或者母岩浆上升过程中有高 MgO 岩浆加入。

周家云^[9]研究认为该区辉长岩与世界上及扬 子地台西缘同时代的一些具地幔柱成因的大陆玄 武岩相似,母岩浆上升过程中亏损地幔组分加入 导致 ε_{Nd} (*t*)值升高^[19-22]。文中所研究的镁铁质 岩体源区,应与该区辉长岩相同,均源于岩石圈 下的地幔柱。虽然这与层状岩体各个相带显著的 富集轻稀土元素相矛盾,但如果地幔源区早期曾 经发生过流体的交代作用^[20,27-29]便可以很好的解 释这一现象。这也就解释了岩石挥发份含量高的 原因以及为什么在碱金属含量不算高的情况下结 晶出了云母和角闪石,这些都是岩浆富含流体的 有力证据。

4.2 岩浆演化

PGR (Pearce element ratio) 图轴系数方法可 以确定镁铁质岩浆演化过程中的分离结晶相^[31]。 从图 7a 中可以确定拉拉含矿镁铁质层状岩体中的 辉石是主要为斜方辉石,也有一定数量的单斜辉 石,主要为分离结晶相; CaO/Al₂O₃ 与 Mg^{*}的正相 关关系,进一步证明了单斜辉石分离结晶作用 (图 7b)。Ni 与 Mg^{*}之间整体没有相关性,但第三 相带和第七相带有明显的正相关性,说明岩浆演 化前期应该也有橄榄石分离结晶相 (图 7c)。

图 7 拉拉镁铁质岩体(Fe+Mg+Mn)/Ti—Si/Ti、CaO/Al₂O₃—Mg[#]、Ni—Mg[#]相关图解 Fig. 7 (Fe+Mg+Mn)/Ti—Si/Ti, CaO/Al₂O₃—Mg[#], Ni—Mg[#] diagrams of the Lala mafic intrusions

依据 Mg^{*}大小可将岩体的七个岩相带分为 3 组: 第一组为 YWS-3、YWS-7 岩相带, Mg^{*} = 0.67 ~ 0.74, 岩浆演化程度低; 第二组为 YWS-4、YWS-6 及 YWS-1、YWS-2 岩相带, Mg^{*} = 0.54~0.60, 岩 浆适度演化; 第三组为 YWS-5 岩相带, Mg^{*} = 0.12~ 0.16, 岩浆高度演化。从七个相带主量元素和岩体 厚度对比图可以看出, MgO 含量以第五相带为中 心,两侧呈对称、脉动变化(图 8),在 YWS-3、 YWS-7 岩相带中含量最高,达到 11.9%~17.91%, 向中心及两侧快速递减,其与岩浆的分离结晶作 用有关。Al₂O₃ 含量变化与 MgO 含量呈现出相反趋 势,第五相带最高,向两侧递减,这应该与第五 相带中出现大颗粒长石聚集有关(图 8)。^TFeO (全铁含量)第五相带明显高于其余相带,应该与 后期的成矿有关。

Fig. 8 Comparison chart of major elements and rock mass thickness

结合岩体的位置,认为第一波岩浆上升后形 成了 YWS-3、YWS-7 岩相带,在向两侧逐渐运移 演化中形成了第二组岩浆成分以 YWS-4、YWS-6 岩相带及 YWS-1、YWS-2 岩相带为代表,之后岩 浆再次脉动上涌,并在上涌过程中混染大量地壳 成分,形成 YWS-5 岩相带。岩浆总体是在一个相 对开放的系统中演化的,分离结晶作用和岩浆的 脉动上侵相伴进行^[32,33]。但是岩浆整体是运移的, 这也是虽有明显的分离结晶作用而未见单矿物堆 晶层的原因。由于岩体尺寸较小,岩浆侵入后, 冷凝时间较短;根据岩浆固相线前锋推进的距离 (*x*)与冷却时间(*t*)的幂律关系式*t*=8.4*x*^{2[34]}可 以得出,各个岩相带岩浆冷凝时间都在几秒内, 避免后续岩浆与前导性岩浆强烈混合,更好的保 存了脉动过程证据。

4.3 构造环境指示意义

周家云^[9]通过研究对比该区辉长岩和冷碛辉 长岩认为扬子块体西缘在新元古代 860~750 Ma 发 育一个南北向展布的康滇裂谷系,该裂谷的形成 与 Rodinia 超级大陆^[35]下的一个超级地幔柱活动有 关。文中所研究的含矿镁铁质层状岩体与矿区辉 长岩群^[9]以及其他新元古代铁镁质岩体在地球化 学元素、同位素上均有很大的相似性,因此,分 析认为该岩体是在同一时期新元古代康滇大陆裂 谷构造环境产生的。

在 Ta/Th—Zr/Nb、Th/Yb—Th/Nb、Ta/Th— Th/Yb 和 Nb/Th—Nb 构造环境判别图解中(图 9),除 Ta/Th—Th/Yb 图外,其余图中所有样品均 落入板内玄武岩(WPB)区内。研究表明,俯冲 带流体交代作用以及地壳混染作用会造成 Th 的相 对富集^[36-37],所以 Ta/Th—Th/Yb 图中 YWS-1、 YWS-2、YWS-3、YWS-4、YWS-6、YWS-7 样品表 现出亲大陆边缘弧(CMA)趋势,应该是由于岩 浆在源区曾经发生过流体的交代作用以及在岩浆 上升过程中受到的地壳混染作用所致,因此认为 层状岩体是板内裂谷成因。

5 结论

(1)川西拉拉矿区形成层状岩体的岩浆来源 于岩石圈地幔,母岩浆上升过程中有亏损地幔组 分加入。

(2)川西拉拉层状岩体矿是岩浆在一个相对 开放的系统中,经过分离结晶和岩浆多次脉动上 侵作用后共同演化而成的。

(3)川西拉拉矿区层状岩体的地球化学元素、 同位素特征均指示板内构造环境,其形成的大地 构造背景与新元古代康滇大陆裂谷有关。

WAP—板内玄武岩; CMA—大陆边缘弧; MORB—洋中脊玄武岩; OIA—大洋弧

图 9 构造判别图 (据文献 [9])

Fig. 9 Discrimination diagrams of tectonic formations (after reference [9])

参考文献/References

- [1] Stewart B W, DePaolo D J. Isotopic studies of processes in mafic magma chambers: II. The Skaergaard intrusion, East Greenland [J]. Contributions to Mineralogy and Petrology, 1990, 104 (2): 125~141.
- [2] Irvine T N. Crystallization sequences in the Muskox intrusion and other layered intrusions—II. Origin of chromitite layers and similar deposits of other magmatic ores [J]. Geochimica et Cosmochimica Acta, 1975, 39 (6~7): 991~1008, IN9-IN10, 1009~1020.
- [3] Kruger F J, Marsh J S. Significance of ⁸⁷Sr/⁸⁶Sr ratios in the Merensky cyclic unit of the Bushveld Complex [J]. Nature, 1982, 298 (5869): 53~55.
- [4] Kruger F J. Filling the Bushveld Complex magma chamber: lateral expansion, roof and floor interaction, magmatic unconformities, and the formation of giant chromitite, PGE and Ti-V-magnetitite deposits [J]. Mineralium Deposita, 2005, 40 (5): 451~472.
- [5] Palacz Z A. Isotopic and geochemical evidence for the evolution of a cyclic unit in the Rhum intrusion, north-west Scotland
 [J]. Nature, 1984, 307 (5952): 618~620.
- [6] 钟宏,胡瑞忠,朱维光,等. 层状岩体的成因及成矿作用
 [J]. 地学前缘, 2007, 14 (2): 159~172.

ZHONG Hong, HU Ruizhong, ZHU Weiguang, et al. Genesis and mineralization of layered intrusions [J]. Earth Science Frontiers, 2007, 14 (2): 159~172. (in Chinese with English abstract)

[7] 朱志敏. 拉拉铁氧化物铜金矿: 成矿时代和金属来源 [D].成都: 成都理工大学, 2011.

ZHU Zhimin. Lala iron oxide copper gold deposit: metallogenic epoch and metal sources [J]. Chengdu: Chengdu University of Technology, 2011: 52~54. (in Chinese with English abstract)

 [8] 周家云,郑荣才,朱志敏,等.拉拉铜矿黄铁矿微量元素地 球化学特征及其成因意义[J].矿物岩石,2008,28(3): 64~71.

> ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al. Geochemical characteristics of trace elements of pyrite and its implications to the metallogenesis in the Lala copper deposit [J]. Journal of Mineralogy and Petrology, 2008, 28 (3): 64~ 71. (in Chinese with English abstract)

- [9] 周家云,郑荣才,朱志敏,等.四川会理拉拉铜矿辉长岩群 地球化学与Sm-Nd同位素定年[J].矿物岩石地球化学通 报,2009,28 (2):111~122.
 ZHOU Jiayun, ZHENG Rongcai, ZHU Zhimin, et al. Geochemistry and Sm-Nd dating of the gabbro in the Lala copper ore district, Sichuan Province, China [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009,28 (2):111 ~122. (in Chinese with English abstract)
- [10] 孙君一,于文佳,唐泽勋,等.川西拉拉 Fe-Cu 矿区含矿镁 铁质层状岩席的首次发现及其成岩成矿意义 [J/OL].地 学前缘,2017,24. https://doi.org/10.13745/j.esf.yx. 2017-3-54

SUN Junyi, YU Wenjia, TANG Zexun, et al. Firstly discovering the ore-bearing mafic layered sill in the Lala Fe-Cu ore district, Western Sichuan Province, China, and its implications for petrogenesis and metallogenesis [J/OL]. Earth Science Frontiers, 2017, 24. https://doi.org/10.13745/j. esf. yx. 2017-3-54 (in Chinese with English abstract)

[11] 于文佳,罗照华,刘永顺,等.拉拉铁铜矿床成因:来自隐 爆角砾岩结构定量化和锆石 U-Pb 年代学的证据 [J]. 岩石 学报,2017,33 (3):925~941.

> YU Wenjia, LUO Zhaohua, LIU Yongshun, et al. Petrogenesis of the Lala iron-copper deposit: Evidence by cryptoexplosive breccia CSD data and their zircon U-Pb data [J]. Acta Petrologica Sinica, 2017, 33 (3): 925 ~ 941. (in Chinese with English abstract)

- [12] Pin C, Zalduegui J S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks [J]. Analytica Chimica Acta, 1997, 339 (1~2): 79 ~89.
- [13] Chen F, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone [J]. International Journal of Earth Sciences, 2002, 91 (3): 469~481.
- [14] Green D H. Genesis of Archean Peridotitic magmas and constraints on Archean geothermal gradients and tectonics [J]. Geology, 1975, 3 (1): 15~18.
- [15] Frey F A, Green D H, Roy S D. Integrated models of basalt Petrogenesis: a study of quartz Tholeiites to olivine Melilitites from south eastern Australia utilizing geochemical and experimental petrological data [J]. Journal of Petrology, 1978, 19 (3): 463~513.
- [16] Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram [J]. Journal of Petrology, 2007, 48 (12): 2341~2357.
- [17] Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks [J]. Earth and Planetary Science Letters, 1976, 28 (3): 459~469.
- [18] Wilson M B. Igneous petrogenesis a global tectonic approach [M]. Netherlands: Springer, 1989.
- [19] 李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和 Sm—Nd 同位素制约及其大地构造意义
 [J].地质科学,2002,37 (3):264~276.

LI Xianhua, ZHOU Hanwen, LI Zhengxiang, et al. Petrogenesis of Neoproterozoic bimodal volcanics in western Sichuan and its tectonic implications: Geochemical and Sm-Nd isotopic constraints [J]. Chinese Journal of Geology, 2002, 37 (3): 264~276. (in Chinese with English abstract)

[20] 姜常义,张蓬勃,卢登荣,等.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区 [J].岩石学报,2004,20 (6):1433~1444.
 JIANG Changyi, ZHANG Pengbo, LU Dengrong, et al.

Petrogenesis and magma source of the ultramafic rocks at

Wajilitag region, western Tarim Plate in Xinjiang [J]. Acta Petrologica Sinica, 2004, 20 (6): 1433~1444. (in Chinese with English abstract)

- [21] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42 (1): 313~345.
- [22] 丁林,张进江,周勇,等.青藏高原岩石圈演化的记录:藏 北超钾质及钠质火山岩的岩石学与地球化学特征 [J].岩 石学报,1999,15 (3):408~421.
 DING Lin, ZHANG Jinjiang, ZHOU Yong, et al. Tectonic implication on the lithosphere evolution of the Tibet Plateau: petrology and geochemistry of sodic and ultrapotassic volcanism in Northern Tibet [J]. Acta Petrologica Sinica, 1999, 15 (3):408~421. (in Chinese with English abstract)
 [23] 曾威,司马献章,王家松,等.周庵铜镍-铂族矿床锆石 U-
- [23] 曾威,司马献章,王家松,等.周庵铜镍-铂族矿床锆石 U-Pb 年代学、地球化学及 Sr-Nd 同位素特征:对周庵基性-超基性岩体及矿床成因的探讨[J].岩石学报,2016,32(4):1232~1248.
 ZENG Wei, SIMA Xianzhang, WANG Jiasong, et al. Geochronology, geochemistry and Sr-Nd isotope characteristics of Zhou'an Cu-Ni-PGE deposit: genesis of mafic-ultramafic rock and ore deposit [J]. Acta Petrologica Sinica, 2016, 32(4): 1232~1248. (in Chinese with English abstract)
- Qi L, Wang C Y, Zhou M F. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China [J]. Lithos, 2008, 106 (3~4): 222~236.
- [25] 赵莉,张招崇,王福生,等.一个开放的岩浆房系统:攀西 新街镁铁-超镁铁质层状岩体 [J].岩石学报,2006,22 (6):1565~1578.
 ZHAO Li, ZHANG Zhaochong, WANG Fusheng, et al. Opensystem magma chamber: an example from the Xinjie maficultramafic layered intrusion in Panxi region, SW China [J]. Acta Petrologica Sinica, 2006, 22 (6): 1565~1578. (in Chinese with English abstract)
- [26] Taylor S R, McLennan S M. The continental crust: its composition and evolution [J]. Oxford: Blackwell Scientific Pub., 1985.
- [27] Hanski E J, Smolkin V F. Iron- and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia [J]. Lithos, 1995, 34 (1~3): 107~125.
- [28] McKenzie D, O'Nions R K. The source regions of ocean Island Basalts [J]. Journal of Petrology, 1995, 36 (1): 133~159.
- [29] Garuti G, Bea F, Zaccarini F, et al. Age, geochemistry and Petrogenesis of the ultramafic pipes in the Ivrea zone, NW Italy
 [J]. Journal of Petrology, 2001, 42 (2): 433~457.
- [30] 夏昭德,姜常义,夏明哲,等.镁铁质-超镁铁质层状岩体基本特征及岩浆作用[J].西北地质,2011,44 (1):85~94.
 XIA Zhaode, JIANG Changyi, XIA Mingzhe, et al. Characteristics and magmatism of mafic ultramafic layered

intrusions [J]. Northwestern Geology, 2011, 44 (1): 85~94. (in Chinese with English abstract)

- [31] 姜常义,夏明哲,钱壮志,等.新疆喀拉通克镁铁质岩体群的岩石成因研究 [J].岩石学报,2009,25 (4):749~764.
 JIANG Changyi, XIA Mingzhe, QIAN Zhuangzhi, et al. Petrogenesis of Kalatongke mafic rock intrusions, Xinjiang [J]. Acta Petrologica Sinica, 2009, 25 (4):749~764. (in Chinese with English abstract)
- [32] Zieg M J, Marsh B D. Multiple reinjections and crystal-mush compaction in the Beacon Sill, McMurdo Dry Valleys, Antarctica [J]. Journal of Petrology, 2012, 53 (12): 2567 ~2591.
- [33] Egorova V, Latypov R. Mafic-ultramafic sills: new insights from M- and S-shaped mineral and whole-rock compositional profiles
 [J]. Journal of Petrology, 2013, 54 (10): 2155~2191.
- [34] 李德东,罗照华,周久龙,等.岩墙厚度对成矿作用的约束:以石湖金矿为例 [J].地学前缘,2011,18 (1):166~178.

LI Dedong, LUO Zhaohua, ZHOU Jiulong, et al. Constraints of dike thicknesses on the metallogenesis and its application to the Shihu gold deposit [J]. Earth Science Frontiers, 2011, 18 (1): 166~178. (in Chinese with English abstract)

[35] 马帅,陈世悦,孙娇鹏,等.祁漫塔格肯德可克火山岩锆石

LA-ICP-MS U-Pb、⁴⁰ Ar/³⁹ Ar 年龄及地质意义 [J]. 地质力 学学报, 2017, 23 (4): 558~566.

MA Shuai, CHEN Shiyue, SUN Jiaopeng, et al. A study on zircon LA-ICP-MS U-PB and 40 Ar/ 39 Ar ages of volcanic rocks from kendekeke, qimantage and the geological significance [J]. Journal of Geomechanics, 2017, 23 (4): 558~566. (in Chinese with English abstract)

- [36] 黄小龙,徐义刚,杨启军,等. 滇西晚始新世高镁富钾火山 岩的地球化学特征及其岩石成因机制探讨 [J]. 地球化学, 2007,36 (2):120~138.
 HUANG Xiaolong, XU Yigang, YANG Qijun, et al. Geochemistry of Late Eocene high-Mg ultrapotassic lavas from western Yunnan, China: constraints on petrogenesis [J]. Geochimica, 2007, 36 (2): 120~138. (in Chinese with English abstract)
- [37] 秦涛,李林川,唐振,等.大兴安岭扎兰屯地区四班岩体岩 石成因及构造环境研究 [J].地质力学学报,2017,23
 (3):369~381.

QIN Tao, LI Linchuan, TANG Zhen, et al. A study on the petrogenesis and tectonic setting of the siban granite mass in Zhalantun area, Great khingan [J]. Journal of Geomechanics, 2017, 23 (3): 369~381. (in Chinese with English abstract)

更正说明

因校排原因,《地质力学学报》2018 年 6 期《兰州轨道交通扰动场地黄土浸水试验研究》文后参考 文献(页码 811—812)整体刊登有误,网刊文章中的参考文献已修改,特此告知并诚挚地向读者致歉。 《地质力学学报》编辑部

2019年2月