引用格式:刘远栋,苏小浪,程海艳,等,2022. 浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义 [J]. 地质力学学报,28 (2):237-256. DOI: 10.12090/j.issn.1006-6616.2021093

Citation: LIU Y D, SU X L, CHENG H Y, et al., 2022. Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance [J]. Journal of Geomechanics, 28 (2): 237-256. DOI: 10.12090/j.issn.1006-6616.2021093

浙南加里东期龙泉岩体年代学、地球化学特征及其地质意义

刘远栋¹,苏小浪²,程海艳¹,张建芳¹,李 翔¹,刘风龙¹ LIU Yuandong¹, SU Xiaolang², CHENG Haiyan¹, ZHANG Jianfang¹, LI Xiang¹, LIU Fenglong¹

1. 浙江省地质调查院,浙江杭州 311203;

2. 杭州金田工程设计咨询有限公司,浙江杭州 311203

1. Zhejiang Institute of Geological Survey, Hangzhou 311203, Zhejiang, China;

2. Hangzhou Jintian Engineering Design Consulting Co. Ltd, Hangzhou 311203, Zhejiang, China

Geochronological and geochemical characteristics of the Caledonian Longquan pluton in southern Zhejiang, and their geological significance

Abstract: The Longquan pluton is a rare Caledonian granitic rock mass in southern Zhejiang. Studies on the Longquan pluton using petrology, geochemistry, and chronology were conducted in this paper, which reveal that it is composed of granite-monzogranite assemblage (granitoid) and tonalite-trondhjemite-granodiorite assemblage (TTG). The two types of rocks are generally enriched in large ion lithophile elements Rb, Ba, Th, U and K, and depleted in high field strength elements Nb, Ta, P and Ti, showing the characteristics of island arc magmatic rocks. The geochemical characteristics of the TTG rocks show that they belong to the typical high-pressure type TTG, and its magma originated from the remelting of the basic lower crust under the action of subducted slab fluid. While the granitoids were mainly derived from partial melting of ancient crustal sediments. Neither of them was significantly contaminated by mantle. The zircon SHRIMP U-Pb and LA-ICP-MS U-Pb dating results show that the Longquan pluton was formed between 443±3 Ma~410±3 Ma. Combined with its petrological and geochemical characteristics, it is indicated that the subduction of oceanic crust had still existed in the Longquan area until early Devonian. **Key words**: TTG; Zircon U-Pb age; Caledonian; Longquan pluton

摘 要: 龙泉岩体是浙南地区少有的加里东期花岗质岩体。岩石学、地球化学和年代学研究显示, 龙泉 岩体由花岗岩-二长花岗岩组合(花岗岩类)和英云闪长岩-奥长花岗岩-花岗闪长岩组合(TTG)组成, 两类岩石组分普遍富集大离子亲石元素 Rb、Ba、Th、U、K, 亏损高场强元素 Nb、Ta、P、Ti, 显示岛弧 岩浆岩的特征。TTG 岩石的地球化学特征显示属于典型的高压型 TTG, 其岩浆来源于受俯冲板片流体作用 的基性下地壳的重熔作用, 而花岗岩类岩石则主要源于古老地壳沉积物的部分熔融, 两者均未受地幔的 明显混染。锆石 SHRIMP U-Pb 和锆石 LA-ICP-MS U-Pb 测年结果表明龙泉岩体的形成时间为 443±3~410± 3 Ma, 结合岩石地球化学特征, 指示晚至泥盆纪早期, 龙泉地区还存在着洋壳的俯冲作用。

关键词: TTG; 锆石 U-Pb 年龄; 加里东期; 龙泉岩体

中图分类号: P588.12+1 文献标识码: A 文章编号: 1006-6616 (2022) 02-0237-20 DOI: 10.12090/j.issn.1006-6616.2021093

基金项目:浙江省级基础性公益性战略性地质工作专项资金项目 (〔省资〕2018006);中国地质调查局地质调查项目 (12120114043101) This research is financially supported by the Special Fund Project of Basic Public Welfare Strategic Geological Work of Zhejiang Province (Grant No. 2018006) and the Geological Project of the China Geological Survey (Grant No. 12120114043101)

第一作者简介:刘远栋(1986—),男,硕士,工程师,主要从事区域地质矿产调查、地质遗迹调查工作。E-mail: lyd661106@163.com 通讯作者:张建芳(1985—),男,硕士,高级工程师,从事区域地质、矿产地质调查研究。E-mail: zhjianfang@126.com 收稿日期:2021-07-27;修回日期:2021-12-24;责任编辑:范二平

加里东运动是中国华南地区极为重要的一次构 造事件,形成了强烈的褶皱和断裂变形(柏道远等, 2006a, 2012, 2014; 舒良树等, 2008; 郝义等, 2010: 舒良树, 2012),并引发了强烈的花岗质岩浆 活动 (周新民, 2003; 舒良树等, 2008; 张芳荣等, 2009; 张芳荣, 2011; 舒良树, 2012), 形成了百余 个岩体,总出露面积大于 2×104 km2,主要分布于武 夷-云开、万洋山-诸广山和江西武功山等地 (沈渭 洲等,2008)。这些花岗质岩石以S型花岗岩为主, 少数为I型。由于对华南前寒武纪—早古生代地球动 力学背景认识上的差异(周新民, 2003; 王德滋, 2004),使得广大学者对华南加里东期花岗质岩石的 成因及构造背景存在争议,目前主流的观点主要为 两种,一种观点认为与板内造山作用有关(周新民, 2003; 柏道远等, 2006b, 2014; 沈渭洲等, 2008; 张芳荣等, 2009; 张菲菲等, 2010; 张苑等, 2011; 胡艳华等, 2012; 舒良树, 2012; 关义立等, 2013, 2016;朱清波等,2015);另一观点认为与板块俯 冲-碰撞作用有关(彭松柏等, 2006a, 2006b; 许德 如等, 2006; 覃小锋等, 2013; 程亮开, 2018; 隰 弯弯和陈世忠, 2019)。近年来在浙南地区开展的系 列区域地质调查结果及研究资料表明,浙江省出露 的丽水-余姚断裂带是武夷地块与东南地块在古生代 时期发生洋-陆俯冲和陆-陆碰撞作用而形成的一条

板块碰撞拼合带(浙江省地质调查院,2015,2016;

刘远栋等,2021),为华南地区存在古生代板块俯 冲-碰撞事件提供了更多的证据。出露于丽水-余姚 断裂带内的龙泉岩体是浙南地区少有的加里东期花 岗质岩体,侵入围岩为龙泉俯冲增生杂岩,鉴于龙 泉岩体特殊的产出位置,对其进行年代学和地球化 学研究,进而探讨岩石成因及形成构造背景,可为 丽水-余姚断裂带以及华南地区古生代构造演化研究 提供进一步依据。

1 区域地质特征

研究区地处华夏地块北端,位于北东向丽水-余姚断裂带内(与福建政和-大浦断裂带相接)。区 内主要出露有古生代龙泉俯冲增生杂岩(浙江省地 质调查院,2015,2016;刘远栋等,2021)和中生 代火山-沉积岩地层,侵入岩除了加里东期龙泉岩体 外,还有少量的古元古代和中生代侵入岩体。龙泉 岩体沿丽水-余姚断裂带北西侧的边界分布,出露于 龙泉县城南西的下湾、大汪、坛湖、墩头、小查田 一带,呈北东—南西向延伸,长约20 km,出露面 积约36 km²(图1)。岩体北西侧与龙泉俯冲增生杂 岩(云母石英片岩、石英片岩、二云片岩等)呈侵 入接触,局部见侵入接触面(倾向295°~310°,倾 角75°)。岩体南东侧或被中生代侵入岩所侵入破 坏,或与中生代火山岩呈断层接触。

a-研究区大地构造位置图; b-龙泉岩体地质简图

图1 龙泉岩体地质简图

Fig. 1 Geological sketch map of the Longquan pluton

(a) Tectonic map of the study area; (b) Geological sketch map of the Longquan pluton

2 龙泉岩体岩石学特征

龙泉岩体岩性复杂,其中主体岩性为二长花岗 岩、花岗岩和 TTG 岩石组合(英云闪长岩-奥长花 岗岩-花岗闪长岩),另外还有少量石英二长岩,为 深成中酸性杂岩体,由于晚期动力变质作用改造及 受风化作用和植被覆盖影响,不同岩石之间的界线 及接触关系不甚清晰,仅局部地方可见花岗闪长岩 侵入于二长花岗岩中,或在花岗闪长岩中出现花岗 岩包体 (图 2a、2b)。同时岩体中还可见较多的二 云片岩、石英片岩、斜长角闪岩等变质岩捕掳体。

a-花岗闪长岩侵入二长花岗岩中; b-花岗闪长岩中的花岗岩包体; c-细粒花岗岩; d-中细粒英云闪长岩图 2 龙泉岩体不同岩石类型接触关系及野外照片

Fig. 2 Field photos showing the contact relationship among different rock types of the Longquan pluton (a) Granodiorite intruded into monzogranite; (b) Granite inclusions in granodiorites; (c) Fine grained granite; (d) Medium-fine grained tonalite

二长花岗岩出露范围最广,为中细粒半自 形一他形粒状结构,局部显变余中细粒结构,钾 长石含量 30%~40%,主要为微斜长石,格子双晶 发育;斜长石含量 25%~35%,聚片双晶发育,与 钾长石接触部位可见交代蠕虫结构,个别隐约可 见环带结构;石英含量 25%~30%,粒内具轻微波 状、带状消光;黑云母含量 5%,呈微鳞片状、 片状。

花岗岩呈中粒、细粒花岗结构(图2c)。主要 由钾长石(35%~40%)、斜长石(15%~20%)、 石英(25%~30%)、云母(5%~10%)等组成。 钾长石半自形粒状,发育格子双晶及条纹双晶, 属微斜长石及条纹长石;斜长石半自形—他形粒 状,发育细密聚片双晶及卡钠复合双晶;石英他 形粒状,紧密镶嵌,缝合线多为锯齿状;云母呈 片状,以黑云母为主,多蚀变为绿泥石。

石英二长岩风化后呈灰色、灰黄色,细粒半自 形粒状结构,块状构造。矿物成分有石英(15%~ 20%)、斜长石(50%±)、钾钠长石(30%±)、暗 色矿物(角闪石和黑云母;5%±),另有少量的金 属矿物、锆石和磷灰石。

花岗闪长岩呈中细粒花岗结构,局部为变质 花岗结构。斜长石含量 55%~60%,半自形,有的 被钾长石呈补片状、斑块状交代,构成反条纹长 石,见机械双晶及双晶纹弯曲、错断等变形现象; 钾长石含量 10%~15%,为正长石,呈他形—半自 形板状;石英含量 20%~25%,他形、齿形粒状, 粒内波状消光、亚颗粒发育;黑云母含量 5%~ 10%,部分被绿泥石、绿帘石取代呈假象。

英云闪长岩具中细粒花岗结构 (图 2d),由石

英(20%~25%)、斜长石(60%~65%)、黑云母 (10%~15%)等矿物组成,局部可见少量钾长石 (5%±)。斜长石(An=26~29)呈半自形板状— 他形粒状,可见聚片双晶和卡钠复合双晶,可见 环带构造,大部分颗粒被绢云母、高岭土不均匀 交代,部分颗粒被钾长石补片状交代;石英呈他 形粒状,粒内具轻微波状、带状消光;钾长石呈 半自形板状—他形粒状,由微斜长石组成,格子 状双晶;黑云母呈微鳞片状、片状,多色性明显, Ng'=黄褐色, Np'=浅黄色,局部绿泥石化、绿帘 石化。

奥长花岗岩具细粒花岗结构,呈青灰绿色, 主要由斜长石(65%~75%)、石英(20%)和少 量黑云母(5%~10%)组成。斜长石呈半自形板 状,聚片双晶发育,具较强绢云母、碳酸盐化; 石英呈他形粒状,充填其他矿物间;黑云母多被 绿泥石、碳酸盐取代。

3 样品采集及测试

为准确获得岩体的成岩年龄,此次对龙泉岩体中的二长花岗岩(PM002-36)、英云闪长岩(PM002-37)、花岗岩(D0382)、石英二长岩(D0380)进行LA-ICP-MS 锆石 U-Pb 定年;对英云闪长岩(D0016)和奥长花岗岩(D2172)进行SHRIMP 锆石 U-Pb 定年。并对各样品进行了主量元素、微量元素和稀土元素测试分析,同时还收集了其他项目中的有关数据(浙江省地质调查院,2013),参与综合分析和研究。

为了保证所分析样品新鲜,首先对样品表面的 风化层进行切除,之后对岩石薄片进行显微观察。 将挑选的每个新鲜样品称量约1kg,清洗烘干,无 污染完全粉碎至<200 μm,使样品均匀具有代表性。 元素地球化学分析在国土资源部杭州矿产资源监督 检测中心采用 SC100e X 荧光光谱仪(BR00105)测 试完成,分析精度优于1%;稀土微量元素采用 ICP-MS 方法分析完成,测试仪器为 Thermo X Serise II电感耦合等离子体质谱联用仪(SN01426C),分析 精度优于5%,测试结果见表1。

锆石分选由河北省廊坊市尚艺岩矿检测技术 服务有限公司完成。SHRIMP 测年在北京离子探针 中心完成,详细的实验流程参见 Williams (1998) 和宋彪等 (2002),数据处理采用 Ludwing Squid 1.01 和 Isoplot 程序(Ludwig, 2003);单个测试点 的误差均为 1σ,²⁰⁶ Pb/²²⁸U 年龄的加权平均值置信 度为 95%。LA-ICP-MS 测年在南京大学内生金属 矿床成矿机制研究国家重点实验室完成,ICP-MS 型号为 Agilent7500 型四级杆质谱仪,激光剥蚀系 统为 NewWave 公司产的 UP-213 固体激光剥蚀系 统,剥蚀孔径为 30 μm,以 He 气作为载气。质量 分馏校正采用锆石标样 GJ-1。数据通过分析软件 GLITTER 计算获得同位素比值、年龄和误差,按 照 Andersen (2002)的方法进行普通铅校正,利 用 Isoplot 软件完成加权平均年龄计算和 U-Pb 谐和 图,同位素比值和年龄误差为 1σ,加权平均年龄

4 岩石地球化学特征

4.1 主量元素特征

通过 TAS 图解(图 3a)对所有样品进行岩石 名称校正,其中二长花岗岩和花岗岩主要落入花 岗岩区域,石英二长岩和一个粗粒花岗岩样品落 入石英二长岩区域,英云闪长岩和花岗闪长岩落 入花岗闪长岩区域,奥长花岗岩落入花岗岩及附 近区域。通过 CIPW 标准矿物计算,所有岩石的石 英(Q)含量均大于10%,在TTG 岩套 CIPW 标准 矿物 An-Ab-Or 图解(图 3b)中,英云闪长岩、奥 长花岗岩、花岗闪长岩全部落入典型 TTG 岩石组 合区域,而二长花岗岩、花岗岩、石英二长岩则 全部落入狭义花岗岩区域。结合岩石学特征,可 将龙泉岩体分成两类岩石组合,一类为二长花岗 岩、花岗岩和石英二长岩(合称为花岗岩类),另 一类则为 TTG 岩石。

花岗岩类岩石 SiO₂含量介于 65.75%~74.09% 之间,平均为 70.25%。Al₂O₃含量范围为 12.04%~ 17.49%,平均为 14.73%,含量属中等偏高,铝饱 和指数(A/CNK)除了一个极低值(0.64)外, 其他位于 1.00~1.40之间,平均为 1.15,在 A/ CNK-A/NK 图解(图 3c)中也均落入过铝质区域。 全铁(FeO^T)含量为 0.73%~4.46%,MgO 含量 为 0.19%~1.30%,主体<1%,Mg[#]值主要在 17.25~ 38.89之间(除一个样品为 52.95),反映其岩浆 主要来自地壳物质的重熔。AFM 图解(图 3d) 中,所有样品位于靠近 A 端的钙碱性演化系列中; 全碱含量范围为 7.44%~10.85%,平均为 8.82%,

表 1 龙泉岩体花岗岩类和 TTG 主量元素 (%)、微量元素 (×10⁻⁶)、稀土元素 (×10⁻⁶) 丰度表

Table 1 Major elements (%), trace and rare earth elements (10^{-6}) of the Longquan granitoids and TTG rocks

样号	PM002-9	PM002-22	D0418	D0382	PM002-36	PM002-15	D0380	PM002-37	D0016	D0470	D2172-1	D2172-2	* JS151	* JS155	* JS157
岩石类型		花園	岗岩		二长花岗岩	石英	二长岩	英云	冈长岩		奥长花岗岩		花岗	闪长岩	花岗岩
SiO ₂	70.49	72.58	74.09	67.79	72.99	66.04	65.75	63.87	66.17	71.61	68.27	66.34	71.24	60.71	72.25
TiO ₂	0.37	0.24	0.09	0.07	0.14	0.61	0.62	0.76	0.67	0.35	0.44	0.30	0.30	0.70	0.20
Al_2O_3	15.27	14.26	13.58	17.49	14.48	16.71	12.04	17.03	15.05	15.18	13.56	16.32	14.38	15.17	13.97
Fe_2O_3	1.88	0.85	0.13	0.30	0.60	3.77	2.09	1.35	0.92	1.31	0.60	1.20	0.89	1.98	0.68
FeO	1.04	1.11	0.54	0.44	0.50	0.61	2.13	3.34	3.20	1.39	2.35	1.30	1.29	3.27	0.80
MnO	0.05	0.05	0.03	0.02	0.03	0.09	0.07	0.10	0.09	0.07	0.05	0.09	0.05	0.08	0.03
MgO	0.49	0.30	0.25	0.19	0.39	0.89	1.30	1.89	1.73	0.54	1.07	0.44	0.89	5.01	0.66
CaO	1.25	0.92	1.09	0.53	0.44	1.28	2.64	3.93	3.98	0.52	3.48	2.70	2.16	2.14	1.07
Na ₂ 0	3.98	3.70	3.62	4.34	4.25	2.83	5.88	3.50	3.75	4.35	4.75	5.46	4.07	3.51	4.00
K20	3.73	4.98	5.18	6.51	4.52	4.61	4.10	1.85	2.03	2.19	1.37	2.29	2.42	2.43	4.35
P205	0.09	0.07	0.02	0.02	0.03	0.19	0.22	0.25	0.21	0.12	0.16	0.17	0.12	0.10	0.07
LOI	1.17	0.78	1.07	0.95	0.85	2.21	2.83	1.68	1.74	1.62	3.46	2.94	1.16	5.00	1.38
Rb	104.00	98.30	139.00	188.00	138.00	170.00	108.00	98.50	85.00	122.00	65.90	102.00	63.05	85.81	94.96
Ba	1424.00	2294.00	899.00	961.00	1559.00	1311.00	786.00	628.00	903.00	588.00	389.00	331.00	1568.18	674.01	1433.00
Th	18.60	16.60	15.40	18.60	16.50	13.10	9.95	8.81	8.40	7.18	7.68	5.38	15.10	8.62	11.40
U	0.60	0.93	1.92	1.58	2.65	2.17	1.56	1.64	1.15	1.09	0.96	2.29	1.92	1.24	0.82
Та	0.38	0.18	7.05	0.51	0.29	0.92	0.87	1.29	0.51	0.98	0.44	2.57	0.38	0.48	0.22
Nb	10.90	6.60	35.00	6.91	4.86	18.50	11.60	14.90	9.80	10.90	5.59	19.70	7.49	7.57	5.80
Sr	191.00	279.00	177.00	261.00	204.00	262.00	417.00	415.00	468.00	284.00	320.00	198.00	472.47	344.36	359, 80
Zr	290.00	165.00	62.10	180.00	119.00	303.00	192.00	222,00	170.00	164.00	194.00	141.00	196, 91	194, 16	159.00
Hf	7.85	4.81	2.74	6.18	3, 53	9.02	4, 67	8.69	7.47	3.84	5.02	3, 47	4, 38	4.73	4, 19
Cr	4 18	5 15	3 20	0 34	5 40	3 71	6.06	24 00	21 10	7 61	11 20	8 10	8 79	240 59	6 23
Ni	3 50	3 80	2.90	0.79	4 80	5 60	3 02	8 60	9 90	6 41	5 03	6.01	3 16	134 76	2 14
Co	3 01	2.06	2.00	0.91	3 50	3 14	4 99	10.20	9 57	4 74	6 55	3 88	3 98	21.26	2 30
v	43 50	45 90	22.00	16 30	36.60	45 70	48 40	81 90	78 70	30.30	34 80	22 80	27 60	98.92	17.00
Se	3 00	2 18	1 57	1 72	2 16	12 10	3 38	10 40	7 07	3 85	3 88	3 65	4 12	13 70	2 05
Ce	1.82	1 22	2 57	2 /3	1 00	3 55	6 53	5 14	2.04	3.57	3.67	5.05	1.74	1 52	2.75
C.J	0.04	0.04	0.02	0.30	0.03	0.14	0.35	0.07	0.03	0.20	0.03	0.30	1. /4	1.52	2.12
Cu Li	12 60	0.04	8 49	0.30 8.46	11 10	22 80	13 40	62 00	25.00	22 00	25 10	17 10			
V	7 78	6.24	12 40	8 04	5 15	22.00	8 52	20.00	0.51	0.65	2 97	8 02	7 17	12 28	5 51
I La	72 20	50.00	25 80	24 80	25.20	50.10	20.70	20.00	32 00	25 20	35.40	14 00	15 80	27 60	27.00
La C-	120.00	82 40	49 90	24.00	25.20	00.40	29.70 52.60	41 50	56.00	25.20	55.40	27.00	43.80	60.00	46 70
Le D-	120.00	0.27	40.00	44.00	40.00	99.00	5 45	41.30	5 91	30.00	6.02	27.00	6 20	7 02	40.70
rr N l	12.00	9.27	10 50	4.92	3.03	50.50	20.20	4.77	22.60	4.42	0.03	2. 80	0.80	7.02	4.4/
Na	40.50	33.20	19.50	18.50	20.10	50.50	20.30	18.00	25.60	10.50	21.00	2 19	21.00	25.57	14.70
Sm	6. 19	4.09	3.72	3. 31	3.17	9.68	3.25	3.82	3.80	2.82	3.03	2.18	3. 23	4.09	2.45
Eu	1.15	0.82	0.60	0.87	0.82	1.84	0.89	1.10	0.8/	0.87	0. //	0.61	0.88	0.97	9.6/
Gd	3.47	2.38	3.00	3.15	2.21	7.58	3.31	3.83	2.70	2.99	1.94	2.40	2.27	3.05	1.65
Tb	0.42	0.31	0.46	0.33	0.26	1.26	0.34	0.65	0.42	0.34	0.20	0.31	0.28	0.40	0.23
Dy	1.70	1.36	2.33	1.80	1.26	6.74	1.88	3.82	1.98	1.99	0.86	1.84	1.26	2.50	1.10
Ho	0.28	0.23	0.43	0.31	0.20	1.30	0.32	0.72	0.36	0.34	0.14	0.29	0.25	0.55	0.19
Er	0.72	0.63	1.10	1.00	0.43	3.54	1.04	1.96	0.95	1.07	0.35	0.88	0.62	1.57	0.50
Tm	0.08	0.08	0.17	0.13	0.06	0.48	0.13	0.31	0.13	0.13	0.05	0.11	0.10	0.23	0.07
Yb	0.55	0.54	1.04	0.99	0.36	3.08	0.93	1.79	0.79	0.89	0.30	0.80	0.67	1.56	0.50
Lu	0.09	0.09	0.15	0.15	0.05	0.43	0.13	0.24	0.13	0.12	0.04	0.11	0.10	0.23	0.08
δEu	0.69	0.74	0.53	0.81	0.90	0.63	0.82	0.87	0.79	0.91	0.91	0.81	0.94	0.80	0.96
δCe	0.90	0.77	0.96	0.92	0.92	0.99	0.96	0.94	0.93	0.77	0.93	0.96	0.91	0.97	0.93

注:标记为"*"的样品引自《1:25万衢州幅区域地质调查报告》(浙江省地质调查院,2013)

Na₂O/K₂O比值主要介于 0.61~1.43, 主体<1, 属 高钾钙碱性-钾玄岩系列(图 3e、3f)。

TTG 岩石 SiO₂ 含量范围为 60.71%~71.61%, 平均为 66.89%。Al₂O₃ 含量范围为 13.56%~ 17.03%,主体大于 15%,与 TTG 岩石 (Al₂O₃> 15%)一致,铝饱和指数 (A/CNK)平均 1.11, A/CNK-A/NK 图解 (图 3c)中位于准铝质—过铝 质花岗岩类的区域。全铁 (FeO^T)含量范围为 2.46%~5.33%,MgO 含量和 Mg^{*}值除一个花岗闪 长岩出现异常值(分别为 5.01%和 54.17)外,其 他样品分别为 0.44%~1.89%和 23.06~34.74,指 示其岩浆主要来自地壳物质的重熔,在 AFM 图解 (图 3d)中,均落在钙碱性演化系列中,与花岗岩 类岩石相比更远离 A 端。全碱含量为 5.35%~ 7.75%,平均为 6.28%, Na₂O/K₂O 比值主要介于 1.44~3.47之间,贫 K₂O 富 Na₂O 特征明显,属钙 碱性系列岩石(图 3e、3f)。主量元素特征符合典 型 TTG 岩石的特征。

a—TAS 图解(Middlemost, 1994; 1—橄榄辉长岩; 2a—碱性辉长岩; 2b—亚碱性辉长岩; 3—辉长闪长岩; 4—闪长岩; 5—花岗闪长岩; 6—花岗岩; 7—硅英岩; 8—二长辉长岩; 9—二长闪长岩; 10—二长岩; 11—石英二长岩; 12—正长岩; 13—副长石辉长岩; 14—副长石 二长闪长岩; 15—副长石二长正长岩; 16—副长正长岩; 17—副长深成岩; 18—霓方钠岩/磷霞岩/粗白榴岩; Ir—Irvine 分界线, 上方为碱 性, 下方为亚碱性); b—An-Ab-Or 图解(图中分区据 O'Connor, 1965); c—A/CNK-A/NK 图解(Rickwood, 1989); d—AFM 图解(Irvine and Barager, 1971); e—AR-SiO, 图解(Wright, 1969); f—SiO,-K,O 图解(Morrison, 1980)

图 3 龙泉岩体主量元素岩石分类与岩石系列划分图解

Fig. 3 Diagrams showing the rock classification and rock series based on the major elements in the Longquan pluton
(a) TAS plot (Middlemost, 1994; 1-olivine gabbro; 2a-alkaline gabbro; 2b-subalkaline gabbro; 3-gabbro diorite; 4-diorite; 5-granodiorite; 6-granite; 7-quartzolite; 8-monzogabbro; 9-monzodiorite; 10-monzonite; 11-adamellite; 12-syenite; 13-foid gabbro; 14-foid monzodiorite; 15-foid monzosyenite; 16-foid syenite; 17-foid plutonite; 18-tawite/urtite/italite; Ir-Irvine boundary, upper is basic, lower is alkaline); (b) An-Ab-Or plot (O'Connor, 1965); (c) A/CNK-A/NK plot (Rickwood, 1989); (d) AFM plot (Irvine and Barager, 1971); (e) AR-SiO, plot (Wright, 1969); (f) SiO₂-K₂O plot (Morrison, 1980)

花岗岩类岩石总体表现出富 K、富碱, 贫 Mg、 Ca、Ti 的特征, TTG 岩石具有富 Ca、Ti、Al, 贫 Mg、K 为特征, 同时从 TTG 到花岗岩类, 岩石分异 指数 (DI) 明显增高, 前者 DI 平均值为 74.74, 分 异演化程度中等, 且奥长花岗岩分异程度较英云闪 长岩高, 后者 DI 平均为 89.58, 分异演化程度高。

4.2 微量元素特征

在微量元素原始地幔标准化的蛛网图上(图 4),花岗岩类和 TTG 岩石的分布曲线具有一定的

相似性,相对富集大离子亲石元素 Rb、Ba、Th、 U、K,中等富集轻稀土 La、Ce和高场强元素 Zr、 Hf,亏损高场强元素 Nb、Ta、P、Ti和重稀土, 配分曲线整体右倾,其中 Nb、Ta、Ti负异常明显, 显示岛弧岩浆岩的特征,表明岩浆起源均与洋壳 俯冲密切相关。两类岩石的区别在于,花岗岩类 岩石具有明显的 U、Sr 负异常,同时 Nb、Ta、P、 Ti 的负异常也比 TTG 岩石更加明显,峰谷效益的 进一步增强与两者岩浆分异程度演化特征相符。

a-花岗岩类; b-TTG 岩类

图 4 龙泉岩体微量元素原始地幔标准化蛛网图

Fig. 4 Primitive mantle-normalized trace element spidergrams for the Longquan pluton (a) Granite; (b) TTG

4.3 稀土元素特征

花岗岩类 ΣREE = 101.21×10⁻⁶ ~ 265.95× 10⁻⁶,平均为156.79×10⁻⁶,LREE/HREE = 9.14 ~35.38,(La/Yb)_N=11.67~94.16,轻重稀土分 馏明显,在稀土元素球粒陨石标准化分布型式图

a-花岗岩类; b-TTG 岩类

图 5 龙泉岩体稀土元素球粒陨石标准化分布型式图 Fig. 5 Chondrite-normalized REE pattern diagrams for the Longquan pluton (a) Granite; (b) TTG

中为向右陡倾的斜线(图 5a)。δEu = 0.53~0.96 (表 1),具有 Eu 负异常,表明岩浆的源区残留 相中有一定量的斜长石,结合它们普遍出现的 Sr 亏损,暗示其岩浆来源与成熟的上部地壳的相 关性。

TTG 岩类岩石的稀土总量较低, Σ REE = 65.23× 10⁻⁶~157.46×10⁻⁶, 平均为 119.79×10⁻⁶。LREE/ HREE = 6.91~32.79, (La/Yb)_N = 8.9~84.64, 轻 重稀土分馏同样明显, 在稀土元素球粒陨石标准 化分布型式图中也为向右陡倾的斜线(图 5b), 但 是总体上较花岗岩类岩石稀土分馏弱,特别是 TTG 岩类岩石的重稀土分馏较花岗岩类岩石更弱, 显 示下部地壳稀土元素的特征。Eu 异常不明显, δ Eu = 0.79~0.94 (表 1),指示岩浆来自斜长石不 稳定的下部地壳。

两类岩石稀土元素特征具有一定的相似性, 均具有低的 Yb 和 Y 含量 (表 1),除一个石英二 长岩具有极高值外 (Yb = 3.08×10^{-6} , Y = 35×10^{-6}), 其余样品 Yb = $0.30 \times 10^{-6} \sim 1.79 \times 10^{-6}$,平均为 0.84×10^{-6} (小于 2.5×10^{-6}), Y = $3.87 \times 10^{-6} \sim$ 20.00×10^{-6} ,平均为 9.08×10^{-6} (小于 20×10^{-6}), 反映源区残留相有石榴子石存在。但是两者在一 些特征值上的差异则指示 TTG 岩类岩浆可能来自 于下部地壳的重熔,而花岗岩类岩石则具有相对 成熟的地壳物质的特征,其岩浆主要来自于上部 地壳物质的重熔。

5 锆石 U-Pb 定年结果

花岗岩(D0382)样品锆石呈半自形长柱状, 长轴一般为100~200 μ m。在锆石 CL 图像中,由 于 U 含量较高,锆石阴极发光较弱,多偏暗,大部 分锆石发育不同程度的震荡环带(图 6)。选取14 颗锆石进行 LA-ICP-MS U-Pb 定年,锆石中 Th 含量 395×10⁻⁶~1410×10⁻⁶,U 含量 1338×10⁻⁶~3249× 10⁻⁶,Th/U 比值 0.29~0.49,属岩浆锆石。14 颗锆 石的²⁰⁶Pb/²³⁸U 的表观年龄为介于450~438 Ma,年龄 谐和度较高,加权平均年龄为443±3 Ma(95%置信 度;图 7),锆石 U-Pb 测试数据见表 2。

图6 龙泉岩体各类岩石锆石阴极发光图像

Fig. 6 Zircon cathodoluminescence image of various rocks in the Longquan pluton

石英二长岩 (D0380) 样品锆石呈自形—半自 形长柱状, 锆石长轴约 50~200 μ m。在锆石 CL 图 中, 内部结构清晰, 振荡环带发育。选取 12 颗锆 石进行 LA-ICP-MS U-Pb 定年 (表 2), 锆石 Th 含 量 199×10⁻⁶~592×10⁻⁶, U 含量 222×10⁻⁶~899× 10⁻⁶, Th/U 比值 0.37~1.05, 为岩浆锆石。12 个 测点获得的²⁰⁶Pb/²³⁸U 表观年龄在 425~400 Ma 之 间,除略偏离谐和线的 1 号、6 号锆石外, 其余 10 颗锆石年龄集中在 421~415 Ma 间, 谐和度高, 加 权平均年龄为 418±3 Ma (95% 置信度)。

二长花岗岩 (PM002-36) 样品锆石呈半自形— 自形长柱状,颗粒长度 150~200 μm,长宽比 3:1~ 5:1。锆石 CL 图像中振荡环带清晰,选取其中 15 颗锆石进行 LA-ICP-MS U-Pb 定年 (表 2), 锆石的 Th、U 含量分别为 77×10⁻⁶~629×10⁻⁶ 和 79×10⁻⁶~ 529×10⁻⁶, Th/U 比值为 0.45~1.77, 为岩浆锆石。 15 颗锆石²⁰⁶Pb/²³⁸U 表观年龄介于 439~428 Ma, 谐和度高, 加权平均年龄为 432±3 Ma。

英云闪长岩 (PM002-37、D0016) 样品锆石呈 半自形—自形长柱状,部分呈长板状、短柱状, 长宽比 2:1~4:1。锆石 CL 图像中多数锆石发育清 晰的震荡环带,部分锆石呈板片状,或振荡环带 宽缓,少数锆石保存了继承锆石的核部,指示锆 石经历了重结晶。PM002-37 样品选取 20 颗锆石进 行 LA-ICP-MS U-Pb 定年 (表 2),锆石 Th、U 含 量分别为 60×10⁻⁶~1137×10⁻⁶ 和 61×10⁻⁶~1322×10⁻⁶,

图 7 龙泉岩体各类岩石锆石 U-Pb 年龄谐和图

Fig. 7 Zircon U-Pb age concordant diagram of various rocks in the Longquan pluton

Th/U 比值除 4 号点为 0.07 外,其余为 0.2~2.38, 平均为 1.05,显示岩浆成因特征。20 颗锆石的年 龄可分为两部分,其中 13 颗锆石²⁰⁶ Pb/²³⁸U 表观年 龄介于 429~421 Ma,谐和度高,加权平均年龄为 424±3 Ma (95%置信度)。另外 7 颗锆石显示有新 元古代早期、中元古代、古元古代、太古代等几 个时期年龄信息。D0016 样品选取 11 颗锆石进行 SHRIMP U-Pb 定年 (表 3),锆石 Th、U 含量分别 为 35×10⁻⁶~390×10⁻⁶ 和 126×10⁻⁶~412×10⁻⁶,Th/ U 比值为 0.2~1.23,平均为 0.74,显示岩浆成因 特征,11 颗锆石²⁰⁶ Pb/²³⁸U 的表观年龄介于 464~ 421 Ma 之间,加权平均年龄为 437±6 Ma。

奥长花岗岩(D2172)样品锆石晶型较好,呈 半自形—自形长柱状,长宽比为2:1~4:1。锆石 CL 图像显示较好的振荡环带,选取14颗锆石进行 SHRIMP U-Pb 定年(表3),锆石 Th、U含量分别 为24×10⁻⁶~438×10⁻⁶和119×10⁻⁶~700×10⁻⁶,Th/ U 比值为0.11~1.02,显示岩浆锆石特征。14颗 锆石获得²⁰⁶Pb/²³⁸U 的表观年龄介于439~406 Ma 之间,谐和度较好,加权平均为418±5 Ma(95% 置信度)。

6 分析与讨论

6.1 岩石成因探讨

相关学者研究资料总结表明, TTG 岩套在地

球化学特征上具有富 Si、Na, Na₂O/K₂O 比值一般 >2, 高 Ba、Sr (一般>400×10⁻⁶), 低 Y (<18×10⁻⁶) 和重稀土 (HREE, Yb<1.9×10⁻⁶), 较高的 (La/ Yb)_N (>15) 和 Sr/Y (\mathscr{S} >40), 亏损 Nb、Ta、Ti, 无 明显 Eu 负异常等特点 (Defant and Drummond, 1990; Martin, 1999; Condie, 2005a, 2005b, 2011; Martin et al., 2005; 吴鸣谦等, 2014; 魏春景等, 2017; 张昌振等, 2018)。

龙泉岩体的 TTG 岩石组合的 Na₂O/K₂O = 1.44~ 3.47,平均为 2.1, Al₂O₃ = 13.56%~17.03%,平 均为 15.24%, Ba 和 Sr 平均含量分别为 725.88× 10⁻⁶和 357.40×10⁻⁶, Y = 3.87×10⁻⁶~20.00×10⁻⁶, 平均为 10.36×10⁻⁶, Yb = 0.3×10⁻⁶~1.79×10⁻⁶, 平均为 0.97×10⁻⁶, (La/Yb)_N 平均为 31.93, Sr/Y 平均为 42.27。

岩石稀土元素分布式样、有无 Eu 异常、Sr/Y 比值可指示 TTG 熔体形成时为高压型还是低压型。 一般高压型 TTG 有高分离的 REE 分布样式 (或陡 倾斜的 REE 分布形态),无 Eu 异常,具低 HREE、 高 Sr、低 Y 的地球化学特征,地球化学特征与埃 达克岩相似 (Atherton and Petford, 1993; Petford and Atherton, 1996; Moyen and Martin, 2012; 邓晋 福等, 2018)。低压型 TTG 则有低分离的 REE 分 布样式 (或近似平坦分布的形态),负 Eu 异常明 显,高的 HREE,低 Sr,高 Y,地球化学特征与埃

」年结果
石 U-Pb 测
CP-MS 锆:
岩体 LA-I(
龙泉岩

	rocks
	felsic
黒	Longquan
「結」	the
巡角	for
U-Pb	dating
锆石	U-Pb
ICP-MS	Zircon
LA-]	-MS
泉岩体	LA-ICP
龙	0
表 2	Table

		232 .	238 .	10		1	希心田	上店					同合素在款	/M -		
样品号及岩性	测点号	/ uI) 	Th/U	202 202		1张元山	C III.	000 200		200		旧川上赤 十四7 /	Ma	000	
		×10 ⁻⁶	×10 ⁻⁰		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	1σ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207} Pb/^{206} Pb$	1σ	$^{207} \text{Pb}/^{235} \text{U}$	1σ	$^{206} \text{Pb}/^{238} \text{U}$	$\frac{1\sigma}{1}$
	1	422	1338	0.31	0.0546	0.0008	0.5286	0.0087	0.0702	0.0010	395	33	431	9	438	9
	2	458	1379	0.33	0.0551	0.0008	0.5484	0.0094	0.0722	0.0010	417	35	444	9	449	9
	3	1344	3249	0.41	0.0568	0.0008	0.5505	0.0089	0.0704	0.0010	482	32	445	9	438	9
	4	610	1604	0.38	0.0550	0.0007	0.5411	0.0084	0.0714	0.0010	412	30	439	9	444	9
	5	395	1381	0.29	0.0557	0.0009	0.5494	0.0095	0.0716	0.0010	438	35	445	9	446	9
	9	750	1892	0.40	0.0548	0.0009	0.5467	0.0103	0.0724	0.0010	404	39	443	7	450	9
	7	908	2331	0.39	0.0557	0.0008	0.5473	0.0090	0.0713	0.0010	441	33	443	9	444	9
D0382 化因石	8	971	2379	0.41	0.0558	0.0009	0.5509	0.0097	0.0716	0.0010	444	36	446	9	446	9
	6	1281	3150	0.41	0.0557	0.0007	0.5471	0.0084	0.0713	0.0010	439	29	443	9	444	9
	10	1319	2874	0.46	0.0556	0.0007	0.5418	0.0080	0.0707	0.0010	435	28	440	5	440	9
	11	487	1608	0.30	0.0550	0.0010	0.5341	0.0107	0.0705	0.0010	411	42	435	7	439	9
	12	732	1487	0.49	0.0552	0.0008	0.5364	0.0085	0.0705	0.0010	421	31	436	9	439	9
	13	1410	3229	0.44	0.0554	0.0007	0.5454	0.0083	0.0714	0.0010	429	29	442	5	444	9
	14	481	1344	0.36	0.0550	0.0008	0.5411	0.0086	0.0713	0.0010	413	31	439	9	444	9
	-	292	787	0.37	0.0543	0.0011	0.5099	0.0104	0.0681	0.0009	384	46	418	7	425	9
	5	592	612	0.97	0.0553	0.0010	0.5113	0.0095	0.0670	0.0009	426	41	419	9	418	5
	ю	199	222	0.90	0.0551	0.0013	0.5093	0.0123	0.0670	0.0010	417	55	418	8	418	9
	4	484	716	0.68	0.0586	0.0017	0.5382	0.0151	0.0667	0.0010	551	64	437	10	416	9
	5	521	518	1.01	0.0552	0.0011	0.5136	0.0101	0.0674	0.0009	422	43	421	7	421	9
D0380	9	247	245	1.01	0.0584	0.0016	0.5151	0.0138	0.0640	0.0010	545	61	422	6	400	9
石英二长岩	7	440	899	0.49	0.0550	0.0009	0.5133	0.0086	0.0677	0.0009	411	35	421	9	422	5
	8	268	296	0.90	0.0549	0.0013	0.5072	0.0117	0.0670	0.0009	408	52	417	8	418	9
	6	212	327	0.65	0.0539	0.0011	0.4949	0.0105	0.0666	0.0009	369	48	408	7	415	9
	10	372	424	0.88	0.0547	0.0012	0.5082	0.0115	0.0674	0.0010	398	51	417	8	421	9
	11	301	517	0.58	0.0544	0.0010	0.5055	0.0096	0.0674	0.0009	389	42	415	9	420	5
	12	291	276	1.05	0.0544	0.0015	0.5047	0.0135	0.0673	0.0010	388	62	415	6	420	9
	-	367	271	1.35	0.0525	0.0017	0.5105	0.0159	0.0705	0.0011	307	73	419	11	439	9
PM002-36	2	431	341	1.27	0.0551	0.0013	0.5259	0.0124	0.0692	0.0010	417	53	429	8	431	9
二长花岗岩	Э	243	244	1.00	0.0549	0.0021	0.5287	0.0199	0.0698	0.0012	409	88	431	13	435	7
	4	385	286	1.34	0.0554	0.0013	0.5265	0.0124	0.0689	0.0010	428	54	429	8	430	9

	口 11 夏	Th ²³² /	U ²³⁸ /				同位素」	比值					同位素年龄	≷∕Ma		
件面亏及石性	週月方	$\times 10^{-6}$	$\times 10^{-6}$	U / U	$^{207}{\rm Pb}/^{206}{\rm Pb}$	1σ	$^{207}{ m Pb}/^{235}{ m U}$	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	$^{207}{\rm Pb}/^{206}{\rm Pb}$	1σ	$^{207}{\rm Pb}/^{235}{\rm U}$	1σ	$^{206}{ m Pb}/^{238}{ m U}$	1σ
	5	190	188	1.01	0.0560	0.0015	0.5348	0.0146	0.0692	0.0010	454	62	435	10	431	9
	9	438	492	0.89	0.0559	0.0015	0.5289	0.0144	0.0687	0.0010	446	63	431	10	428	9
	L	262	266	0.98	0.0550	0.0012	0.5274	0.0118	0.0695	0.0009	413	51	430	×	433	9
	8	174	176	0.99	0.0545	0.0038	0.5232	0.0346	0.0695	0.0017	393	159	427	23	433	10
	6	376	262	1.44	0.0550	0.0013	0.5220	0.0120	0.0688	0.0009	413	52	426	×	429	9
FM007-30 一卡花岗분	10	429	331	1.29	0.0548	0.0012	0.5210	0.0117	0.0689	0.0009	404	51	426	×	430	9
	11	LL	79	0.97	0.0552	0.0033	0.5244	0.0305	0.0689	0.0014	421	137	428	20	429	6
	12	629	355	1.77	0.0551	0.0013	0.5250	0.0126	0.0691	0.0010	417	55	428	×	430	9
	13	181	200	0.90	0.0566	0.0018	0.5412	0.0173	0.0693	0.0011	475	74	439	11	432	9
	14	505	529	0.95	0.0558	0.0010	0.5342	0.0103	0.0694	0.0009	445	42	435	٢	433	9
	15	82	183	0.45	0.0545	0.0017	0.5180	0.0161	0.0689	0.0010	391	73	424	11	430	9
	-	60	91	0.66	0.0557	0.0019	0.6036	0.0199	0.0786	0.0012	439	76	479	13	488	7
	2	191	974	0.20	0.0550	0.0008	0.5116	0.0084	0.0674	0.0009	414	35	420	9	421	5
	б	92	61	1.51	0.0563	0.0028	0.5279	0.0261	0.0681	0.0012	463	115	430	17	424	Ζ
	4	65	920	0.07	0.0827	0.0010	2.3563	0.0331	0.2066	0.0026	1263	25	1229	10	1211	14
	5	101	134	0.76	0.0561	0.0022	0.5227	0.0198	0.0676	0.0011	457	88	427	13	421	٢
	9	842	1322	0.64	0.0560	0.0010	0.5313	0.0099	0.0688	0.0009	453	41	433	٢	429	9
	7	363	912	0.40	0.0981	0.0012	3.6321	0.0502	0.2687	0.0034	1587	23	1557	11	1534	17
	8	286	213	1.34	0.2453	0.0030	20.3636	0.2833	0.6023	0.0078	3154	20	3109	13	3039	31
	6	409	266	1.54	0.0555	0.0016	0.5173	0.0144	0.0676	0.0010	434	64	423	10	421	9
PM002-37	10	153	470	0.32	0.1535	0.0032	8.5164	0.1384	0.4025	0.0051	2385	36	2288	15	2180	23
英云闪长岩	11	61	98	0.62	0.0670	0.0015	1.2758	0.0281	0. 1381	0.0020	838	46	835	13	834	11
	12	89	108	0.82	0.0624	0.0015	1.0380	0.0251	0.1207	0.0017	688	52	723	12	734	10
	13	217	147	1.48	0.0555	0.0019	0.5175	0.0173	0.0677	0.0011	430	LL	423	12	422	9
	14	1137	478	2.38	0.0564	0.0013	0.5265	0.0124	0.0677	0.0010	469	53	429	8	422	9
	15	191	411	0.46	0.0544	0.0013	0.5084	0.0119	0.0677	0.0010	389	53	417	8	423	9
	16	112	80	1.41	0.0549	0.0040	0.5164	0.0363	0.0682	0.0017	409	167	423	24	425	10
	17	445	248	1.79	0.0548	0.0014	0.5162	0.0130	0.0683	0.0010	404	57	423	6	426	9
	18	738	832	0.89	0.0549	0.0011	0.5185	0.0105	0.0685	0.0009	409	45	424	٢	427	9
	19	922	936	0.99	0.0551	0.0015	0.5158	0.0137	0.0680	0.0010	414	61	422	6	424	9
	20	204	120	1.70	0.0548	0.0030	0.5197	0.0273	0.0688	0.0014	404	125	425	18	429	6

第2期

Table 3 Sl	HRIMP 2	Zircon U-F	b dating	g of Long	gquan fe	slsic rock	ß												
样品号及	비사	206 PJ / 27	n/	Th/	²³² Th/	²⁰⁶ Pb * /			年龄/Ma						同位	素比值			
岩性	週月ち	FD _c /%	$\times 10^{-6}$	$\times 10^{-6}$	²³⁸ U	$\times 10^{-6}$	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	$1\sigma^2$	⁹⁰⁷ Pb/ ²⁰⁶ Pb	$\frac{1}{\sigma}$	²⁰⁸ Pb/ ²³² Th	$1\sigma^{20}$	$^{\prime}\mathrm{Pb}$ * $^{206}\mathrm{Pb}$ *	±/% 21	$^{77} {\rm Pb} ~^{*} / ^{235} {\rm U}$	±/% 2	$^{06}{ m Pb}^{*}/^{238}{ m U}$	±/%	error
	-	0.38	126	56	0.46	7.9	449	11	323	98	391	19	0.0529	4.3	0.526	5.0	0.0721	2.6	0.516
	2	0.00	353	354	1.04	21.3	437	10	357	43	425	12	0.0537	1.9	0.519	3.1	0.0702	2.5	0.791
	3.1	0.17	194	230	1. 22	11.6	433	11	330	65	425	13	0.0530	2.9	0.508	3.8	0.0695	2.6	0.667
	3.2	0.42	145	133	0.95	9.3	464	12	514	71	478	16	0.0576	3.2	0.592	4.1	0.0746	2.6	0.627
	4	0.18	303	360	1. 23	18.4	440	11	371	50	437	12	0.0540	2.2	0.526	3.3	0.0706	2.5	0.746
D0016	5	0.00	180	35	0. 20	11.1	448	11	361	99	413	18	0.0538	2.9	0.533	3.9	0.0719	2.5	0.656
英云闪长岩	9	0.14	351	266	0. 78	20.9	432	10	368	71	420	13	0.0539	3.1	0.515	4.0	0.0692	2.5	0.620
	7	0.15	261	65	0. 26	15.9	442	13	360	54	412	18	0.0537	2.4	0.526	3.8	0.0710	3.0	0.779
	8	ļ	364	154	0.44	21.8	435	10	439	42	475	14	0.0557	1.9	0.536	3.1	0.0698	2.5	0.796
	6	0.13	366	390	1.10	22.2	438	11	383	43	427	12	0.0543	1.9	0.527	3.2	0.0704	2.5	0.791
	10	0.00	327	157	0.50	19.0	421	10	467	45	461	24	0.0564	2.0	0.524	3.2	0.0674	2.5	0.773
	11	0.08	412	291	0. 73	24.0	422	10	425	41	423	12	0.0553	1.9	0.516	3.1	0.0677	2.5	0.799
	-	0.17	233	24	0.11	13.5	421	10	373	76	386	99	0.0540	4.3	0.503	5.0	0.0675	2.5	0.505
	2	0.31	308	225	0.76	18.2	428	10	356	71	425	14	0.0536	3.2	0.507	4.0	0.0686	2.5	0.619
	3	0.07	568	423	0.77	32.5	416	10	379	35	404	11	0.0542	1.6	0.498	2.9	0.0666	2.5	0.845
	4	0.08	457	438	0.99	26.0	413	10	339	39	404	Π	0.0533	1.7	0.485	3.0	0.0661	2.4	0.819
	5	0.24	188	128	0.71	11.0	424	10	337	71	419	14	0.0532	3.1	0.498	4.0	0.0679	2.5	0.630
	9	0.18	284	222	0.81	16.5	422	10	332	99	413	13	0.0531	2.9	0.495	3.8	0.0677	2.5	0.653
D2172	L	0.16	410	403	1.02	23.0	407	10	362	46	398	11	0.0538	2.1	0.483	3.2	0.0651	2.5	0.768
奥长花岗岩	8	1.37	119	84	0.74	6.8	411	11	382	190	379	24	0.0543	8.6	0.492	9.0	0.0658	2.7	0.296
	6	0.17	323	222	0.71	18.4	414	10	341	48	404	12	0.0533	2.1	0.487	3.3	0.0663	2.5	0.758
	10	0.19	238	153	0.66	14.1	429	10	368	60	411	13	0.0539	2.7	0.511	3.7	0.0687	2.5	0.684
	11	0.11	244	229	0.97	14.1	420	10	401	70	410	13	0.0547	3.1	0.508	4.0	0.0673	2.5	0.623
	12	0.19	700	80	0.12	39.5	409	10	410	51	435	32	0.0550	2.3	0.497	3.3	0.0656	2.4	0.731
	13	0.08	402	70	0.18	22.5	406	10	461	41	422	27	0.0562	1.9	0.504	3.1	0.0650	2.5	0.797
	14	0.61	165	104	0.65	10.0	439	11	361	130	393	20	0.0538	5.7	0.523	6.2	0.0705	2.6	0.415

龙泉岩体 SHRIMP 锆石 U-Pb 测年结果

表 3

注: Pb_。和 Pb^{*}分别代表普通铅和放射性铅

达克岩完全不同 (Drummond and Defant, 1990; Petford and Atherton, 1996; 邓晋福等, 2017)。

龙泉岩体 TTG 岩石的 REE 分布样式显示具有 高分离的 REE 分布样式,稀土元素球粒陨石配分 曲线为右陡倾型,无 Eu 异常或仅有微弱的 Eu 负 异常,HREE 含量低,以上各项地球化学特征显 示,TTG 岩石组合属于高 Al₂O₃ 高压型 TTG (Barker, 1979; Moyen and Martin, 2012;邓晋福 等,2018),在Y-Sr/Y 图解(图 8a)中,样品主 要落入埃达克岩区域,显示了与埃达克岩的相似 性,也符合高压型 TTG 岩类与埃达克岩相类似的 特征。

显生宙的 TTG 岩浆的形成通常与大洋板块俯 冲有关,或者由俯冲板片的部分熔融产生,或者 由于板块俯冲所形成的流体,使得下地壳中变质 的玄武质岩石发生重熔。因而,前者形成的 TTG 岩类通常产出于俯冲带前缘,代表了地壳的横向 增生;而后者形成的 TTG 则通常位于弧后盆地或 陆缘造山带等环境,指示了地壳的垂向增生 (Condie, 1982; Pitcher, 1982, 1993; Maniar and Piccoli, 1989; Condie and Benn, 2006;冯艳芳等, 2010, 2011;吴鸣谦等,2014)。龙泉岩体中两类 岩石的微量元素和稀土元素组成特征,显示出协 调的演化性,表明两者可能具有相似的岩浆源区 和成因环境。而稀土总量(ΣREE)及其他化学 成分之间的差异,说明它们的源区组成并非完全 相同。

TTG 岩石的 Ni 和 Cr 含量较高, 除去一个极大 值样品 (JS155), 其余样品 Ni、Cr 平均含量为 6.52×10⁻⁶、13.47×10⁻⁶,并以英云闪长岩含量最 高,指示其与基性物质具有较强的亲缘性。TTG 岩石的 Ni/Cr 比值平均为 0.54, 低于花岗岩类岩 石的 1.01, 表明 TTG 岩石岩浆形成时源区残留较 大量的橄榄石、或在岩浆演化过程中有较大量的 橄榄石发生结晶分异。TTG 岩石 Nb/Ta 值平均为 13.96,低于亏损地幔均值(15.5),而花岗岩类 岩石 Nb/Ta 值平均为 20.05, 远高于亏损地幔均 值,这可能与石英二长岩、花岗岩、二长花岗岩 岩浆有一定的榍石结晶分异有关, 或源区部分融 熔时残留较大程度的单斜辉石。在 C/MF-A/MF 成 因判别图解(图 8b)中,TTG 岩石主要落入基性 岩部分熔融区域,花岗岩类则主要落入变质岩部 分熔融区域。TTG 岩石低的 Mg[#]值(主体为 23.06~34.74),以及其他特征主量元素比值均指 示其母质熔体来源于玄武质熔体源区 (Rapp and Watson, 1995;赖绍聪和朱毓,2020),而花岗岩 类的母质熔体则总体显示来源于砂泥质岩石熔体 的特征 (图 8c—8e)。

邓晋福等(2010, 2018)研究表明, 与 SiO, 含量对应的 MgO 含量可做为鉴别 TTG 岩类是属于 俯冲板片的岩浆,还是弧下地壳源的岩浆。将龙 泉岩体 TTG 岩石样品投入 SiO,-MgO 图解上(图 8f),样品主要落在低或非镁安山岩(LMA)系列 及附近区域,指示其岩浆来源于岩浆弧下地壳, 而虽然它不是洋俯冲板片直接熔出的岩浆, 但它 仍然与洋俯冲的环境有关(邓晋福等, 2018)。岩 石的 Mg[#]大小可以灵敏的反映岩浆是否受到地幔物 质的混染 (Yogodzinski et al., 1995; Smithies, 2000; 第五春荣等, 2007; 姜杨, 2014), 龙泉岩 体的 TTG 岩石和花岗岩类的 Mg[#]普遍较低,大部 分<40,表明无幔源岩浆加入或混合,这也正是岩 浆源于岩浆弧地壳的特征,岩浆弧地壳位于楔形 地幔的上面,所以这里形成的岩浆上升侵入地壳 浅部时不会和地幔橄榄岩发生反映, 使 Mg*增高。

文章收集了龙泉岩体 Sr-Nd 同位素数据 (浙江 省地质调查院, 2015; 表 4),结果显示不同岩石 之间的同位素组成有一定差异。TTG 岩类具有较 低的 Sr 同位素比值, Rb/Sr 为 0.13~0.25, 分布在 地壳演化线(0.17)的上下, I、较低, 分布于 0.707658~0.708782之间,具有基性下部地壳岩石 的特征; Sm/Nd 值相对较高, 且较均一, 分布在 0.16~0.17 之间,分布在地壳岩石的区间(0.10~ 0.26); Sm-Nd 分异指数 f_{Sm/Nd} 较低,为-0.51~ -0.48,低于地壳的平均值 (0.40),显示 Sm-Nd 体系分异程度较高, 但 $f_{Sm/Nd}$ 值大于-0.6, 可以认 为岩石中的 Sm、Nd 同位素体系较好地记录了源区 的特征; I_{Nd} 值和 ε_{Nd} (t) 值均相对较高,前者分 布于 0.511943~0.512032 之间,后者则变化于 $-3.2 \sim -1.5$ 的范围,在 $t - \varepsilon_{Nd}$ (t) 图解中落在华 南元古代地壳演化带之上、球粒陨石演化线之下 (图 9); TTG 岩类的 Sr-Nd 同位素特征显示其岩浆 源区可能为基性的下部地壳。

二长花岗岩则具有相对较高的 Rb/Sr 值 (0.31)、较低的 I_{sr} 值 (0.708231) 和 I_{Nd} 值 (0.511737); Sm-Nd 分异指数 $f_{Sm/Nd}$ 较低 (-0.50), 同样显示了分异程度较高的 Sm-Nd 体系; ε_{Nd} (t)

a—岩石 Y-Sr/Y 判别图解; b—C/MF-A/MF 图解 (Altherr et al, 2000); c—SiO₂-Mg[#]图解; d— (Na₂O+K₂O+FeO^T+MgO+TiO₂) - (Na₂O+ K₂O) / (FeO^T+MgO+TiO₂) 图解 (Patiño Douce, 1999); e— (CaO+FeO^T+MgO+TiO₂) -CaO/ (FeO^T+MgO+TiO₂) 图解 (Patiño Douce, 1999); f—SiO₂-MgO 图解 (邓晋福等, 2010; HMA—高镁安山岩, MA—镁安山岩; PQ—高镁/低镁界线, RS—低镁/非镁界线)

图 8 龙泉岩体成因类型判别图解

Fig. 8 Discrimination diagrams showing the genetic type of the Longquan pluton

(a) Y-Sr/Y plot; (b) C/MF-A/MF plot (Altherr et al, 2000); (c) $SiO_2-Mg^{#}$ plot; (d) $(Na_2O+K_2O+FeO^{T}+MgO+TiO_2) - (Na_2O+K_2O) / (FeO^{T}+MgO+TiO_2)$ plot (Patiño Douce, 1999); (e) $(CaO+FeO^{T}+MgO+TiO_2) - CaO/ (FeO^{T}+MgO+TiO_2)$ plot (Patiño Douce, 1999); (f) SiO_2-MgO plot (Deng et al.; 2010; HMA-High Magnesium andesite, MA-Magnesium andesite; PQ-Boundary of HMA/MA; RS-Boundary of MA/non-MA)

值较低 (-7.2),显示了较明显的地壳特征;在 t- ε_{Nd} (t) 图解中岩石则明显分布在华南元古代地壳 演化带中(图9),表明岩石的母岩浆为古老地壳物质重熔的产物。

表 4 龙泉岩体 Sr、Nd 同位素组成

Table 4	4 Sr	and	Nd	isotopic	compositions	of	the	Longquan	pluton
---------	------	-----	----	----------	--------------	----	-----	----------	--------

样号	D7008	D7007	D2792	D2797
岩性	英云区	习长岩	花岗闪长岩	二长花岗岩
年龄/Ma	413	413	413	415
$\mathrm{Rb/\times10^{-6}}$	64.52	61.97	85.81	90.58
$\mathrm{Sr/\times10^{-6}}$	421.76	491.96	344.36	291.26
$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	0.442968	0.364743	0.900465	0.721556
$^{87}{\rm Sr}/^{86}{\rm Sr}$	0.711387	0.710705	0.712980	0.712475
$I_{\rm Sr}$	0.708782	0.708560	0.707658	0.708231
$Sm/\times 10^{-6}$	2.32	3.24	4.09	1.75
$Nd/\times 10^{-6}$	14.46	19.27	25.37	10.97
$^{147}{\rm Sm}/^{144}{\rm Nd}$	0.097583	0.102228	0.097202	0.098115
$^{143}\rm Nd/^{144}\rm Nd$	0.512207	0.512308	0.512230	0.512002
$I_{\rm Nd}$	0.511943	0.512032	0.511966	0.511737
$\boldsymbol{\varepsilon}_{\mathrm{Sr}}$ (t)	67.7	64.6	51.8	59.9
$\boldsymbol{\varepsilon}_{\mathrm{Nd}}$ (t)	-3.2	-1.5	-2.7	-7.2
$f_{\rm Sm/Nd}$	-0.50	-0.48	-0.51	-0.50
$T_{\rm DM}/{ m Ma}$	1239	1153	1205	1514
$T_{\rm 2DM}/{ m Ma}$	1415	1275	1376	1742

注:数据引用自《1:25 万衢州幅区域地质调查报告》(浙江省地质调查院,2013)

英云闪长岩和奥长花岗岩的一阶 Nd 模式年龄 *T*_{DM} 为 1239~1153 Ma,与二阶模式年龄 *T*_{2DM} 为 1415~ 1275 Ma 较为接近,表明岩石的源区在进入地表后 Sm-Nd 体系没有发生大程度的分馏,也意味着部分 熔融形成的岩浆受到上部地壳物质混染较少;岩 石的二阶 Nd 模式年龄可以较大程度上代表了源区 岩石脱离地幔进入地壳的年龄,也即反映了该区 在中元古代时存在地壳生长;同时也指示了,TTG

表 5 龙泉岩体同位素年龄一览表

15 O 一花岗岩类 △ 一TTG岩类 10 DM 5 s_{Nd}/t 0 CHUR -5 0 华南元古代地壳演化带 -10-15 L 250 500 750 1000 t/Ma

图 9 龙泉岩体 t-ε_{Nd}(t) 图解(据沈渭洲等, 2008;
 DM—亏损地幔, CHUR—球粒陨石均一化源区)

Fig. 9 Diagram in terms of $t - \varepsilon_{Nd}$ (*t*) for the Longquan pluton (modified after Shen et al, 2008; DM-Deficit mantle, CHUR-chondrite uniform reservoir)

岩浆由中元古代形成的地壳物质重熔而成,而非 直接来自新生地壳的重熔。二长花岗岩具有较老 的 Nd 模式年龄, *T*_{2DM} 为 1742 Ma,与龙泉俯冲增 生杂岩中出现的古元古代继承锆石年龄较为接近, 表明其岩浆可能为古元古代的古老物质重熔形成。

6.2 地质意义

龙泉岩体的测年结果表明,岩体的侵入时间 跨度大,年龄在443±3~410±3 Ma之间,为加里东 期侵入岩(表5)。

Table 5 Isotopic	e age table of the Lo	ngquan pluton			
样号	岩性	岩类	年龄/Ma	测试方法	资料来源
JS151	花岗闪长岩		410±3	LA-ICP-MS	浙江省地质调查院,2015
D2172	奥长花岗岩		418±5	SHRIMP	此次研究
JS155	花岗闪长岩	TTG	419+5	LA-ICP-MS	浙江省地质调查院,2015
PM002-37	英云闪长岩		424±3	LA-ICP-MS	此次研究
D0016	英云闪长岩		437±6	SHRIMP	此次研究
D0380	石英二长岩		418±3	LA-ICP-MS	此次研究
PM002-36	二长花岗岩	花岗岩	432±3	LA-ICP-MS	此次研究
D0382	花岗岩		443 ± 3	LA-ICP-MS	此次研究

龙泉岩体的岩石学、地球化学和同位素特征 表明,由于俯冲带岩石圈增厚,俯冲板片流体使 基性下地壳中的中元古代形成的地壳物质和古元 古代古老物质分别发生熔融形成 TTG 岩类和花岗 岩类的岩浆源。在微量元素的构造判别图解中, TTG 岩类与花岗岩类均集中分布在火山弧花岗岩 区域及同碰撞花岗岩区域(图10),指示其形成于 大陆弧边缘环境,与 TTG 成因分析的结果一致。 近年来在浙南地区开展的系列区域地质调查 及研究工作,在原新元古代龙泉岩群变质岩系中 解体出了不同构造属性的岩块,提出了其为洋陆 板块俯冲环境下形成的俯冲增生杂岩(刘远栋等, 2021),形成受控于武夷地块与东南地块(潘桂棠 等,2016)的板块碰撞事件。龙泉地区正好位于 板块碰撞的中心位置,板块碰撞形成了浙南最重 要的构造带——丽水-余姚拼合带,其南延至福建

VAG—火山弧花岗岩; ORG—洋脊花岗岩; WPG—板内花岗岩; syn-COLG—同碰撞花岗岩 a—Rb-(Nb+Y) 图解; b—Rb-(Yb+Ta) 图解

图 10 龙泉岩体 Rb-(Nb+Y) 图解和 Rb-(Yb+Ta) 图解 (Pearce et al., 1984)

Fig. 10 Rb-(Nb+Y) diagram and Rb-(Yb+Ta) diagram for the Longquan pluton (Pearce et al., 1984)

(a) Rb-(Nb+Ta) diagram; (b) Rb-(Yb+Ta) diagram

VAG-Volcanic arc granite; ORG-Ocean ridge granite; WPG-Within plate granite; syn-COLG-syn-collisional granite

与政和-大浦断裂带相接,它的南东界限为传统的 狭义的丽水-余姚断裂, 而北西界限则为龙泉-老 竹断裂,跨度达30km。该结合带在浙南地区控制 了龙泉俯冲增生杂岩及龙泉岩体等地质体的分布, 在闽北地区则控制了马面山岩群变质岩系的分布, 最新的研究资料表明,福建马面山岩群的构造属 性与龙泉岩群一样,均是一套受控于洋板块构造 体系下的增生杂岩 (聂童春, 2018; 聂童春和周 小栋, 2019; 周小栋, 2020)。同时, 闽北地区近 年来陆续发现的多个加里东期岩体的研究结果也 指示其均形成于板块构造体制下的俯冲-碰撞造山 作用(隰弯弯和陈世忠, 2019;刘欢等, 2020; 王峰, 2021)。此次龙泉 TTG 岩体的厘定为华南存 在古生代板块俯冲-碰撞事件进一步补充了重要佐 证,同时岩体成岩年龄信息为限定此次板块俯冲-碰撞的时限提供了依据。作为已知侵入到龙泉俯 冲增生杂岩中最老的岩体,并且是与板块俯冲有 关的岩体,其最年轻的成岩年龄(410 Ma)信息 指示该地区晚至泥盆纪早期还存在大洋板块的俯 冲作用,关于该大洋板块俯冲的方向目前尚未十 分明确,但从龙泉岩体出露的位置推测,可能为 由南东向北西俯冲。岩体中 443 Ma 的最大成岩年 龄限定了龙泉俯冲增生杂岩的形成年龄上限,而 410 Ma的年龄大致限定了洋陆俯冲结束的时间上 限。在龙泉岩体与龙泉俯冲增生杂岩的侵入接触 带上,普遍发育与围岩相似的构造变形迹象,表 明岩体定位后与围岩一起遭受了后期的构造变形, 这期构造事件可能与龙泉俯冲增生杂岩中存在大 量 404~402 Ma 的峰期变质年龄(刘远栋, 2021) 相关,或是指示了洋陆俯冲结束后陆陆碰撞作用 的时间。

7 结论

(1) 龙泉岩体岩石组合复杂,主体岩性为花 岗岩、二长花岗岩和 TTG 岩石组合,锆石 SHRIMP U-Pb 测年和锆石 LA-ICP-MS U-Pb 测年结果表明, 其形成时间为 443±3~410±3 Ma,属加里东期深成 杂岩体。

(2) 龙泉岩体 TTG 岩石组合源自受俯冲板片 流体作用的基性下地壳的重熔,而俯冲板片产生 的流体同样对上部地壳物质进行交代和加热,使 古老的地壳沉积物部分熔融形成花岗岩和二长花 岗岩的岩石组合,两种类型岩石均未见有幔源岩 浆加入或混合的证据。

(3) 龙泉岩体的岩石组合特征,指示该地区 晚至泥盆纪早期还存在洋壳的俯冲作用,这为华 南晚古生代大地构造环境研究提供了新资料。

References

ALTHERR R, HOLL A, HEGNER E, et al., 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern

Vosges (France) and northern Schwarzwald (Germany) [J]. Lithos, 50 (1-3): 51-73.

- ANDERSEN T, 2002. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb [J]. Chemical Geology, 192 (1-2): 59-79.
- ATHERTON M P, PETFORD N, 1993. Generation of sodium-rich magmas from newly underplated basaltic crust [J]. Nature, 362 (6416): 144-146.
- BAI D Y, HUANG J Z, MA T Q, et al., 2006a. Geology and geochemistry of the Silurian Penggongmiao granitic pluton in the southeastern Hunan province and its implication for tectonic setting [J]. Geoscience, 20 (1): 130-140. (in Chinese with English abstract)
- BAI D Y, WANG X H, MA T Q, et al., 2006b. Characteristics and forming mechanism of Indosinian folds in the southeast Hunan [J]. Geology and Mineral Resources of South China (4): 50-57. (in Chinese with English abstract)
- BAI D Y, JIA B H, ZHONG X, et al., 2012. Potential genesis of the trending changes of Jinning Period and Caledonian structural lineamens in middle-southern Hunan [J]. Journal of Geomechanics, 18 (2): 165-177. (in Chinese with English abstract)
- BAI D Y, ZHONG X, JIA P Y, et al., 2014. Zircon SHRIMP U-Pb dating and geochemistry of Caledonian Miao' ershan pluton in the western part of the Nanling Mountains and their tectonic significance [J]. Acta Petrologica et Mineralogica, 33 (3): 407-423. (in Chinese with English abstract)
- BARKER F, 1979. Trondhjemites, dacites, and related rocks [M]. Amsterdam: Elsevier Scientific Publishing Company.
- CHENG L K, 2018. Zircon U-Pb dating and geological significance of Caledonian Dadongshan pluton in the Northern Guangdong province [J]. Geology and Mineral Resources of South China, 34 (1): 31-40. (in Chinese with English abstract)
- CONDIE K C, 1982. Plate tectonic and crustal evolution [M]. New York: Pergamon Press: 1-310.
- CONDIE K C, 2005a. Earth as an evolving planetary system [M]. 2nd ed. Amsterdam: Elsevier: 1-447.
- CONDIE K C, 2005b. TTGs and adakites: are they both slab melts? [J]. Lithos, 80 (1-4): 33-44.
- CONDIE K C, BENN K, 2006. Archean geodynamics: similar to or different from Modern geodynamics? [M] //BENN K, MARESCHAL J C, CONDIE K C. Archean geodynamics and environments, volume 164. Washington: American Geophysical Union: 47-59.
- DEFANT M J, DRUMMOND M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 347 (6294): 662-665.
- DENG J F, LIU C, FENG Y F, et al., 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): two igneous rock types related to oceanic subduction [J]. Geology in China, 37 (4): 1112-1118. (in Chinese with English abstract)
- DENG J F, FENG Y F, DI Y J, et al. , 2017. Intrusive Geotectonics of China [M]. Beijing: Geological Publishing House: 1-583 (in

Chinese with English abstract).

- DENG J F, LIU C, DI Y J, et al., 2018. Discussion on the tonalitetrondhjemite-granodiorite (TTG) petrotectonic assemblage and its subtypes [J]. Earth Science Frontiers, 25 (6): 42-50. (in Chinese with English abstract)
- DIWU C R, SUN Y, LIN C L, et al., 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan province, China [J]. Acta Petrologica Sinica, 23 (2): 253-262. (in Chinese with English abstract)
- DRUMMOND M S, DEFANT M J, 1990. A model for trondhjemitetonalite-dacite genesis and crustal growth via slabmelting: Archean to modern comparisons [J]. Journal of Geophysical Research: Solid Earth, 95 (B13): 21503-21521.
- FENG Y F, DENG J F, WANG S J, et al., 2010. The recognition of the magnesian andesitic series (MA) in the Precambrian granitic rocks in western Shandong Province and the continental crustal growth [J]. Geology in China, 37 (4): 1119-1129. (in Chinese with English abstract)
- FENG Y F, DENG J F, XIAO Q H, et al., 2011. Recognizing the TTG rock types: discussion and suggestion [J]. Geological Journal of China Universities, 17 (3): 406-414 (in Chinese with English abstract).
- GUAN Y L, YUAN C, LONG X P, et al., 2013. Early Paleozoic intracontinental orogeny of the eastern South China block: evidence from I-type granitic plutons in the SE Yangtze Block [J]. Geotectonica et Metallogenia, 37 (4): 698-720. (in Chinese with English abstract)
- GUAN Y L, YUAN C, LONG X P, et al., 2016. Genesis of mafic enclaves from early Paleozoic granites in the South China Block: evidence from petrology, geochemistry and zircon U-Pb geochronology [J]. Geotectonica et Metallogenia, 40 (1): 109-124. (in Chinese with English abstract)
- HAO Y, LI S Z, JIN C, et al., 2010. Caledonian structural characteristics and mechanism in Hunan-Jiangxi-Guangxi Provinces [J]. Geotectonica et Metallogenia, 34 (2): 166-180. (in Chinese with English abstract)
- HU Y H, QIAN J F, ZHU X Y, et al, 2012. The overview and origin analysis for the Caledonian movement in the South China block [J].
 Bulletin of Science and Technology, 28 (11): 42-48, 71. (in Chinese with English abstract)
- Irvine T N, Barager W R A. 1971. A guide to the chemical classification of the common volcanic rocks [J]. Canadian Journal of Earth Sciences, 8: 523-548.
- JIANG Y, ZHAO X L, LIN S F, et al., 2014. Identification and tectonic implication of neoproterozoic continental margin-Arc TTG Assemblage in Southeastern Margin of the Yangtze carton [J]. Acta Geologica Sinica, 88 (8): 1461-1474. (in Chinese with English abstract)
- LAI S C, ZHU Y, 2020. Petrogenesis and geodynamic implications of Neoproterozoic typical intermediate-felsic magmatism in the western margin of the Yangtze Block, South China [J]. Journal of Geomechanics, 26 (5): 759-790 (in Chinese with English

abstract).

- LIU H, ZHAO X L, GEY P, et al., 2020. U-Pb dating of zircons from Xiayuan and Hongyegang intrusives in Dikou area and their geological significance [J]. Geological Review, 66 (3): 637-650. (in Chinese with English abstract)
- LIU Y D, LIU F L, ZHANG J F, et al., 2021. Geochronological and geochemical characteristics of the metamorphic basic rocks and their tectonic implications in the Longquan area, Zhejiang Province [J]. Acta Geologica Sinica, 95 (2): 413-426. (in Chinese with English abstract)
- LUDWIG K R, 2003. User's manual for Isoplot/Ex, Version 3.00. A geochronological toolkit for Microsoft excel [J]. Berkeley Geochronology Center Special Publication, 4 (2): 1-70.
- MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids [J]. GSA Bulletin, 101 (5): 635-643.
- MARTIN H, 1999. Adakitic magmas: modern analogues of Archaean granitoids [J]. Lithos, 46 (3): 411-429.
- MARTIN H, SMITHIES R H, RAPP R, et al., 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution [J]. Lithos, 79 (1-2): 1-24.
- MIDDLEMOST E A K, 1994. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 37 (3-4): 215-224.
- MORRISON G W, 1980. Characteristics and tectonic setting of the shoshonite rock association [J]. Lithos, 13 (1): 97-108.
- MOYEN J F, MARTIN H, 2012. Forty years of TTG research [J]. Lithos, 148: 312-336.
- NIE T C, 2018. Determination and significance of Mamianshan subduction accretionary complex in Jianou Area, Fujian Province [J]. Geology of Fujian, 37 (4): 273-287. (in Chinese with English abstract)
- NIE T C, ZHOU X D, 2019. Geological characteristics and its origin of quartzite in Mamianshan subduction accretive complex of Gaomen Area of Jianou City, Fujian Province [J]. Geology of Fujian, 38 (4): 237-247. (in Chinese with English abstract)
- O'CONNOR J T, 1965. A classification for quartz-rich igneous rocks based on feldspar ratios [R]. Reston: United StatesGeological Survey: 79-84.
- PAN G T, LU S N, XIAO Q H, et al., 2016. Division of tectonic stages and tectonic evolution in China [J]. Earth Science Frontiers, 23 (6): 1-23 (in Chinese with English abstract).
- PATIÑO DOUCE A E, 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 168 (1): 55-75.
- PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 25 (4): 956-983.
- PENG S B, JIN Z M, LIU Y H, et al., 2006a. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai orogenic Belt, western Guangdong Province, China [J]. Earth Science-Journal of China University of

Geosciences, 31 (1): 110-120. (in Chinese with English abstract)

- PENG S B, JIN Z M, FU J M, et al., 2006b. Geochemical characteristics of basic intrusive rocks in the Yunkai uplift, Guangdong-Guangxi, China, and their tectonic significance [J]. Geological Bulletin of China, 25 (4): 434-441. (in Chinese with English abstract)
- PETFORD N, ATHERTON M, 1996. Na-rich partial melts from newly underplated basalticcrust: the Cordillera Blanca batholith, Peru [J]. Journal of Petrology, 37 (6): 1491-1521.
- PITCHER W S, 1982. Granite type and tectonic environment [M] // HSÈU K J. Mountain building processes. London: Academic Press: 19-40.
- PITCHER W S, 1993. The nature and origin of granite [M]. London: Blackie Academic & Professional.
- QIN X F, WANG Z Q, HU G A, et al., 2013. Geochronology and geochemistry of Hudong gneissic composite pluton in the junction of Guangdong and Guangxi provinces: implications for Early Paleozoic tectono-magmatism along the northern margin of Yunkai massif [J]. Acta Petrologica Sinica, 29 (9): 3115-3130. (in Chinese with English abstract)
- RICKWOOD PC, 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 22 (4): 247-263.
- RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling [J]. Jouranal of Petrology, 36 (4): 891-931.
- SHEN W Z, ZHANG F R, SHU L S, et al., 2008. Formation age, geochemical characteristics of the Ninggang granite body in Jiangxi Province and its tectonic significance [J]. Acta Petrologica Sinica, 24 (10): 2244-2254. (in Chinese with English abstract)
- SHU L S, YU J H, JIA D, et al., 2008. Early Paleozoic orogenic belt in the eastern segment of South China [J]. Geological Bulletin of China, 27 (10): 1581-1593. (in Chinese with English abstract)
- SHU L S, 2012. An analysis of principal features of tectonic evolution in South China Block [J]. Geological Bulletin of China, 31 (7): 1035-1053. (in Chinese with English abstract)
- SMITHIES R H, 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite [J]. Earth and Planetary Science Letters, 182 (1): 115-125.
- SONG B, ZHANG Y H, WAN Y S, et al., 2002. Mount making and procedure of the SHRIMP dating [J]. Geological Review, 48 (S1): 26-30 (in Chinese with English abstract).
- WANG D Z, 2004. The study of granitic rocks in South China: looking back and forward [J]. Geological Journal of China Universities, 10 (3): 305-314 (in Chinese with English abstract).
- WANG F, 2021. Zircon U-Pb geochronology, geochemical characteristics and tectonic implications of Caledonian granites from the Xuanhe area, Southwestern Fujian Province [J]. Geology in China, 48 (1): 207-228. (in Chinese with English abstract)
- WEI C J, GUAN X, DUNG J, 2017. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs [J]. Acta Petrologica Sinica, 33 (5): 1381-1404. (in Chinese with English abstract)

- WILLIAMS I S, 1998. U-Th-Pb geochronology by ion microprobe [M] //MCKIBBEN M A, SHANKS III W C, RIDLEY W I. Applications of microanalytical techniques to understanding mineralising processes. Colorado: Society of Economic Geologists: 1-35.
- WRIGHT J B, 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis [J]. Geological Magazine, 106 (4): 370-384.
- WU M Q, ZUO M L, ZHANG D H, et al., 2014. Genesis and diagenetic environment of TTG suite [J]. Geological Review, 60 (3): 503-514 (in Chinese with English abstract).
- XI W W, CHEN S Z, 2019. Identification of Caledonian granite in the Zhenghe area, Fujian province and its tectonic significance [J]. Acta Geologica Sinica, 93 (4): 804-815. (in Chinese with English abstract)
- XU D R, CHEN G H, XIA B, et al., 2006. The caledonian adakitelike granodiorites in Banshanpu Area, Eastern Hunan Province, South China: petrogenesis and geological significance [J]. Geological Journal of China Universities, 12 (4): 507-521. (in Chinese with English abstract)
- YOGODZINSKI G M, KAY R W, VOLYNETS O N, et al., 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge [J]. GSA Bulletin, 107 (5): 505-519.
- ZHANG C Z, ZHANG Q, JIN W J, et al., 2018. Can Archean TTG compare with Adakite? Global data gives results [J]. Chinese Journal of Geology, 53 (4): 1254-1266. (in Chinese with English abstract)
- ZHANG F F, WANG Y J, FAN W M, et al., 2010. LA-ICPMS zircon U-Pb geochronology of late Early Paleozoic granites in eastern Hunan and western Jiangxi provinces, South China [J]. Geochimica, 39 (5): 414-426. (in Chinese with English abstract)
- ZHANG F R, SHU L S, WANG D Z, et al., 2009. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China [J]. Earth Science Frontiers, 16 (1): 248-260. (in Chinese with English abstract)
- ZHANG F R, 2011. The geological and geochemical characteristics and its petrogenesis for Caledonian granites in the central-Southern JiangXi Province [D]. Nanjing: Nanjing University. (in Chinese with English abstract)
- ZHANG Y, SHU L S, CHEN X Y, 2011. Geochemistry, geochronology, and petro-genesis of the early Paleozoic granitic plutons in the centralsouthern Jiangxi Province, China [J]. Science China Earth Sciences, 54 (10): 1492-1510.
- Zhejiang Institute of Geological Survey, 2013. 1 : 250000 Regional Geological Survey of Quzhou [R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)
- Zhejiang Institute of Geological Survey, 2015. Geological structure of Jiangshan-Shaoxing Suture [R]. Hangzhou: Zhejiang Institute of Geological Survey. (in Chinese with English abstract)
- Zhejiang Institute of Geological Survey, 2016. 1 : 50000 Regional Geological Survey of Xuanhu, Ruiyang [R]. Hangzhou: Zhejiang

Institute of Geological Survey. (in Chinese with English abstract)

- ZHOU X D, 2020. Geochemistry and geochronology characteristics of diagonal amphibole, within the Mamianshan subbduction-accretionary complex zone, and its geological significance in Jianou City, Northwest Fujian Province [J]. Geology of Fujian, 39 (2): 79-95. (in Chinese with English abstract)
- ZHOU X M, 2003. My thinking about granite geneses of South China [J]. Geological Journal of China Universities, 9 (4): 556-565. (in Chinese with English abstract)
- ZHU Q B, HUANG W C, MENG Q X, et al., 2015. Caledonian tectonic event of Cathaysia block: constraints on zircon U-Pb geochronology and Lu-Hf isotope for two kinds of granite [J]. Geology in China, 42 (6): 1715-1739. (in Chinese with English abstract)

附中文参考文献

- 柏道远,黄建中,马铁球,等,2006a. 湘东南志留纪彭公庙花岗岩 体的地质地球化学特征及其构造环境 [J].现代地质,20 (1): 130-140.
- 柏道远, 王先辉, 马铁球, 等, 2006b. 湘东南印支期褶皱特征及形成机制 [J]. 华南地质与矿产 (4): 50-57.
- 柏道远, 贾宝华, 钟响, 等, 2012. 湘中南晋宁期和加里东期构造线 走向变化成因 [J]. 地质力学学报, 18 (2): 165-177.
- 柏道远,钟响,贾朋远,等,2014. 南岭西段加里东期苗儿山岩体锆 石 SHRIMP U-Pb 年龄、地球化学特征及其构造意义 [J]. 岩石 矿物学杂志,33 (3):407-423.
- 程亮开,2018. 粤北大东山岩体加里东期花岗岩锆石 U-Pb 年龄及 地质意义 [J]. 华南地质与矿产,34 (1):31-40.
- 邓晋福,刘翠,冯艳芳,等,2010. 高镁安山岩/闪长岩类 (HMA) 和镁安山岩/闪长岩类 (MA):与洋俯冲作用相关的两类典型的 火成岩类 [J].中国地质,37 (4):1112-1118.
- 邓晋福,冯艳芳,狄永军,等,2017.中国侵入岩大地构造 [M]. 北京:地质出版社:1-583.
- 邓晋福,刘翠,狄永军,等,2018. 英云闪长岩-奥长花岗岩-花岗 闪长岩 (TTG) 岩石构造组合及其亚类划分 [J]. 地学前缘,25 (6):42-50.
- 第五春荣,孙勇,林慈銮,等,2007. 豫西宜阳地区 TTG 质片麻岩锆 石 U-Pb 定年和 Hf 同位素地质学 [J]. 岩石学报,23 (2): 253-262.
- 冯艳芳,邓晋福,王世进,等,2010.鲁西地区早前寒武纪花岗岩类 中镁安山质岩石系列(MA)的识别及大陆地壳生长 [J].中国 地质,37(4):1119-1129.
- 冯艳芳,邓晋福,肖庆辉,等,2011. TTG 岩类的识别:讨论与建议 [J]. 高校地质学报,17 (3):406-414.
- 关义立, 袁超, 龙晓平, 等, 2013. 华南地块东部早古生代的陆内造 山作用:来自 I型花岗岩的启示 [J]. 大地构造与成矿学, 37 (4): 698-720.
- 关义立, 袁超, 龙晓平, 等, 2016. 华南早古生代花岗岩中暗色包体 的成因: 岩石学、地球化学和锆石年代学证据 [J]. 大地构造与 成矿学, 40 (1): 109-124.
- 郝义,李三忠,金宠,等,2010. 湘赣桂地区加里东期构造变形特征及成因分析 [J]. 大地构造与成矿学,34 (2):166-180.
- 胡艳华, 钱俊锋, 褚先尧, 等, 2012. 华南加里东运动研究综述及其

性质初探 [J]. 科技通报, 28 (11): 42-48, 71.

- 姜杨,赵希林,林寿发,等,2014. 扬子克拉通东南缘新元古代陆缘 孤型 TTG 的 厘 定 及 其 构 造 意 义 [J]. 地 质 学 报,88 (8): 1461-1474.
- 赖绍聪,朱毓,2020.扬子板块西缘新元古代典型中酸性岩浆事件 及其深部动力学机制:研究进展与展望 [J].地质力学学报,26 (5):759-790.
- 刘欢,赵希林,葛延鹏,等,2020. 武夷地块北东部迪口地区下元岩 体和红叶岗岩体锆石 La-ICP-MS U-Pb 年龄及其地质意义 [J]. 地质论评,66 (3):637-650.
- 刘远栋,刘风龙,张建芳,等,2021.浙江龙泉地区变质基性岩年代 学、地球化学特征及构造意义 [J].地质学报,95(2):413-426.
- 聂童春,2018. 福建建瓯地区马面山俯冲增生杂岩的厘定及其意义 [J]. 福建地质,37 (4):273-287.
- 聂童春,周小栋,2019.福建建瓯高门地区马面山俯冲增生杂岩中 石英岩地质特征及其成因探讨 [J].福建地质,38 (4): 237-247.
- 潘桂棠,陆松年,肖庆辉,等,2016.中国大地构造阶段划分和演化[J].地学前缘,23 (6):1-23.
- 彭松柏,金振民,刘云华,等,2006a. 云开造山带强过铝深熔花岗 岩地球化学、年代学及构造背景 [J]. 地球科学—中国地质大学 学报,31 (1):110-120.
- 彭松柏,金振民,付建明,等,2006b.两广云开隆起区基性侵入岩的地球化学特征及其构造意义 [J].地质通报,25(4):434-441.
- 覃小锋,王宗起,胡贵昂,等,2013.两广交界地区壶垌片麻状复式 岩体的年代学和地球化学:对云开地块北缘早古生代构造-岩浆 作用的启示 [J]. 岩石学报,29 (9):3115-3130.
- 沈渭洲,张芳荣,舒良树,等,2008. 江西宁冈岩体的形成时代、地 球化学特征及其构造意义 [J]. 岩石学报,24 (10):2244-2254.
- 舒良树,于津海,贾东,等,2008. 华南东段早古生代造山带研究 [J]. 地质通报,27 (10):1581-1593.
- 舒良树, 2012. 华南构造演化的基本特征 [J]. 地质通报, 31 (7): 1035-1053.
- 宋彪,张玉海,万渝生,等,2002. 锆石 SHRIMP 样品靶制作、年龄
 测定及有关现象讨论 [J]. 地质论评,48 (S1):26-30.
- 王德滋, 2004. 华南花岗岩研究的回顾与展望 [J]. 高校地质学报,

10 (3): 305-314.

- 王峰, 2021. 闽西南宣和加里东期花岗岩锆石 U-Pb 年龄、地球化 学特征及对华南造山的启示 [J]. 中国地质, 48 (1): 207-228.
- 魏春景,关晓,董杰,2017. 基性岩高温-超高温变质作用与 TTG 质 岩成因 [J]. 岩石学报,33 (5):1381-1404.
- 吴鸣谦, 左梦璐, 张德会, 等, 2014. TTG 岩套的成因及其形成环境 [J]. 地质论评, 60 (3): 503-514.
- 隰弯弯,陈世忠,2019. 福建政和地区加里东期花岗岩的厘定及其 大地构造意义 [J]. 地质学报,93 (4): 804-815.
- 许德如,陈广浩,夏斌,等,2006. 湘东地区板杉铺加里东期埃达克 质花岗闪长岩的成因及地质意义 [J]. 高校地质学报,12 (4): 507-521.
- 张昌振,张旗,金维浚,等,2018. 太古宙 TTG 能否与埃达克岩对 比?:全球数据给出的结果 [J].地质科学,53 (4):1254-1266.
- 张芳荣,舒良树,王德滋,等,2009. 华南东段加里东期花岗岩类形成构造背景探讨 [J]. 地学前缘,16 (1):248-260.
- 张芳荣,2011. 江西中—南部加里东期花岗岩地质地球化学特征及 其成因 [D]. 南京:南京大学.
- 张菲菲, 王岳军, 范蔚茗, 等, 2010. 湘东-赣西地区早古生代晚期 花岗岩体的 LA-ICPMS 锆石 U-Pb 定年研究 [J]. 地球化学, 39 (5): 414-426.
- 张苑,舒良树,陈祥云,2011. 华南早古生代花岗岩的地球化学、 年代学及其成因研究:以赣中南为例 [J]. 中国科学:地球科学, 41 (8):1061-1079.
- 浙江省地质调查院,2013. 浙江1:25 万衢州市幅区域地质调查成 果报告 [R]. 杭州:浙江省地质调查院.
- 浙江省地质调查院,2015. 江山-绍兴拼合带地质构造研究成果报告 [R]. 杭州:浙江省地质调查院.
- 浙江省地质调查院,2016. 浙江1:5万铉湖、瑞洋区域地质矿产调 查成果报告 [R]. 杭州:浙江省地质调查院.
- 周小栋,2020. 闽西北建瓯马面山俯冲增生杂岩带内斜长角闪岩的 地球化学、年代学特征及其地质意义 [J]. 福建地质,39 (2): 79-95.
- 周新民,2003.对华南花岗岩研究的若干思考 [J].高校地质学报, 9 (4):556-565.
- 朱清波,黄文成,孟庆秀,等,2015. 华夏地块加里东期构造事件: 两类花岗岩的锆石 U-Pb 年代学和 Lu-Hf 同位素制约 [J].中国 地质,42 (6):1715-1739.